Russian Journal of Physical Chemistry B

, Volume 12, Issue 5, pp 852–859 | Cite as

Effect of a Cocurrent Gas Flow on the Velocity and Concentration Limits of Combustion Wave Propagation in Granulated Ti + C + xAl2O3 Mixtures

  • B. S. SeplyarskiiEmail author
  • R. A. Kochetkov
  • T. G. Lisina
Combustion, Explosion, and Shock Waves


In this paper, we studied the effects of a cocurrent gas flow on the velocity and combustion limits of a granulated Ti + C mixture diluted with inert corundum granules. In the whole range of dilutions, an increase in the combustion rate was observed for the flow of active and inert gases. This effect is several times greater than that calculated based on the filtration combustion theory. Concentration combustion limits (75 wt %), the incomplete combustion of Ti + C granules, and the ratio of the combustion rates of the undiluted mixture and the mixture at the propagation limit (from 2 to 3) are well predicted by the percolation theory. The same combustion limit of concentration in the flow of inert and active gases and without flow indicates a percolation-phase transition as the reason for the cessation of combustion.


combustion critical phenomena cocurrent flow of gas heat exchange granulation percolation theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. S. Seplyarskii and R. A. Kochetkov, in Proceedings of the 3rd International Conference on Non-isothermic Phenomena and Processes: From Thermal Explosion Theory to Structural Macrokinetics (ISMAN, Chernogolovka, 2016), p.175.Google Scholar
  2. 2.
    B. S. Seplyarskii and R. A. Kochetkov, Int. J. Self-Propag. High-Temp. Synth. 25, 132 (2016). doi 10.3103/S1061386216020084CrossRefGoogle Scholar
  3. 3.
    A. P. Aldushin and A. G. Merzhanov, Thermal Wave Propagation in Heterogeneous Media (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  4. 4.
    J. Nahmias, H. Téphany, J. Duarte, et al., Can. J. For. Res. 30, 1318 (2000). doi 10.1139/x00-047CrossRefGoogle Scholar
  5. 5.
    T. Beer, Combust. Sci. Technol. 72, 297 (1990).CrossRefGoogle Scholar
  6. 6.
    A. P. Aldushin and B. S. Seplyarskii, Sov. Phys. Dokl. 23, 483 (1978).Google Scholar
  7. 7.
    Yu. Sh. Matros, Nonstationary Processes in Catalytic Reactors (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  8. 8.
    F. Kreith and U. Black, Basic Heat Transfer (Harper and Row, New York, 1980).Google Scholar
  9. 9.
    D. Carole, N. Fréty, S. Etienne-Calas, C. Merlet, and R.-M. Marin-Ayral, Mater. Sci. Eng. A 419, 365 (2006).CrossRefGoogle Scholar
  10. 10.
    P. S. Grinchuk and O. S. Rabinovich, Fiz. Goreniya Vzryva 4, 41 (2004).Google Scholar
  11. 11.
    A. G. Merzhanov and A. S. Mukas’yan, Solid-Flame Combustion (Torus Press, Moscow, 2007) [in Russian].Google Scholar
  12. 12.
    M. D. Rintoul and S. Torquato, J. Phys. A: Math. Gen. 30, 585 (1997). doi 10.1088/0305-4470/30/16/005CrossRefGoogle Scholar
  13. 13.
    P. S. Grinchuk, JEPTER 86, 875 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. S. Seplyarskii
    • 1
    Email author
  • R. A. Kochetkov
    • 1
  • T. G. Lisina
    • 1
  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations