Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 5, pp 804–829 | Cite as

Use of IR Absorption Laser Spectroscopy at Nuclear Fuel Cycle Plants: Problems and Prospects (Review)

  • G. V. Golubkov
  • G. Yu. Grigoriev
  • Sh. Sh. Nabiev
  • L. A. Palkina
  • M. G. Golubkov
Structure of Chemical Compounds. Spectroscopy
  • 10 Downloads

Abstract

The main stages of the nuclear fuel cycle from extraction of uranium ores to disposal of radioactive waste resulting from the processing of spent nuclear fuel were briefly analyzed. A list of the most probable radioactive substances and toxic chemicals that can be part of emergency emissions at each stage of the nuclear fuel cycle was composed. The basic physical principles of local and remote IR absorption laser technologies for detecting radioactive substances and toxic chemicals in the atmosphere for solving some unique problems of environmental monitoring were considered. The analytical potential of the currently most effective laser technologies for atmospheric monitoring at nuclear fuel cycle plants based on the achievements of diode laser spectroscopy, cavity ringdown laser spectroscopy, and optoacoustic laser spectroscopy using diode and quantum-cascade lasers was discussed. Current trends in the development of laser technologies for atmospheric monitoring in different IR spectral ranges were analyzed.

Keywords

nuclear fuel cycle atmospheric monitoring laser spectrometer absorption line quantum-cascade laser isotope composition sensitivity selectivity minimum detectable concentration multipass cell radioactive and highly toxic compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Environmental and Source Monitoring for Purposes of Radiation Protection, Safety Guide No. RS-G-1.8 (IAEA, Vienna, 2016).Google Scholar
  2. 2.
    S. Apikyan and D. Diamond, Nuclear Power and Energy Security (Springer, Dordrecht, 2009).Google Scholar
  3. 3.
    Management of Hazardous Wastes, Ed. by H. Saleh and R. O. Rahman (InTech, Rijeka, 2016).Google Scholar
  4. 4.
    Accident Analysis for Nuclear Power Plants, Safety Rep. Ser. No. 23 (IAEA, Vienna, 2002).Google Scholar
  5. 5.
    F. Guarnieri and S. Travadel, Bull. At. Sci. 70 (6), 79 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Králik, in Recent Improvements of Power Plants Management and Technology, Ed. by A. B. Nikolic and Z. S. Janda (InTech, Rijeka, 2017).Google Scholar
  7. 7.
    Sh. Sh. Nabiev and Yu. N. Ponomarev, Opt. Atmos. Okeana 11, 1274 (1998).Google Scholar
  8. 8.
    G. Yu. Grigor’ev, S. L. Malyugin, Sh. Sh. Nabiev, and M. A. Sukhanova, At. Energy 105, 280 (2008).CrossRefGoogle Scholar
  9. 9.
    F. J. Rahn, Guide to Nuclear Power Technology. A Resource for Decision Making (Krieger, Malabar, 1991).Google Scholar
  10. 10.
    V. C. Marshall, Major Chemical Hazards (Ellis Horwood, Chichester, 1987).Google Scholar
  11. 11.
    www.iaea.org/newscenter/features/nuclearsecurity/terrorism. html.Google Scholar
  12. 12.
    A. Melnick, Biological, Chemical, and Radiological Terrorism (Springer, Berlin, Heidelberg, 2010).Google Scholar
  13. 13.
    L. Weinstein and A. Davison, Fluorides in the Environment: Effects on Plants and Animals (CABI, Cambridge, 2004).CrossRefGoogle Scholar
  14. 14.
    A. S. Rozhkov and T. A. Mikhailova, The Effects of Fluorine-Containing Emissions on Conifers (Springer, Berlin, Heidelberg, 1993).CrossRefGoogle Scholar
  15. 15.
    Analytical Techniques for Atmospheric Measurement, Ed. by D. E. Heard (Blackwell, London, 2010).Google Scholar
  16. 16.
    T. Hoffmann, R-J. Huang, and M. Kalberer, Anal. Chem. 83, 4649 (2011).CrossRefGoogle Scholar
  17. 17.
    Sh. Sh. Nabiev and L. A. Palkina, Russ. J. Phys. Chem. B 11, 729 (2017).CrossRefGoogle Scholar
  18. 18.
    M. W. Sigrist, R. Bartlome, D. Marinov, et al., Appl. Phys. B 90, 289 (2008).CrossRefGoogle Scholar
  19. 19.
    J. Hodgkinson and R. P. Tatam, Meas. Sci. Technol. 24, 012004 (2013).CrossRefGoogle Scholar
  20. 20.
    W. Zeller, L. Naehle, P. Fuchs, et al., Sensors 10, 2492 (2010).CrossRefGoogle Scholar
  21. 21.
    Semiconductor Lasers: Fundamentals and Applications, Ed. by A. Baranov and E. Tournie (Woodhead, Cambridge, 2013).Google Scholar
  22. 22.
    P. Patimisco, A. Sampaolo, L. Mihai, et al., Sensors 16, 533 (2016).CrossRefGoogle Scholar
  23. 23.
    V. Spagnolo, P. Patimisco, S. Borri, et al., Opt. Lett. 37, 4461 (2012).CrossRefGoogle Scholar
  24. 24.
    Sh. Sh. Nabiev and L. A. Palkina, in The Atmosphere and Ionosphere: Elementary Processes, Monitoring, Ball Lightning, Physics of Earth and Space Environments, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Berlin, Heidelberg, 2014), p.113.Google Scholar
  25. 25.
    S. M. Chernin, Multiway Systems in Optics and Spectroscopy (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  26. 26.
    M. B. Frish, R. T. Wainner, M. Laderer, et al., IEEE Sensors J. 10, 639 (2010).CrossRefGoogle Scholar
  27. 27.
    Sh. Sh. Nabiev, A. I. Nadezhdinskii, Ya. Ya. Ponurovskii, et al., Vestn. MEI, No. 2, 56 (2014).Google Scholar
  28. 28.
    The Nuclear Fuel Cycle. From Ore to Waste, Ed. by P. Wilson (Oxford Univ. Press, Oxford, 1996).Google Scholar
  29. 29.
    N. Tsoulfanidis, The Nuclear Fuel Cycle (Am. Nucl. Soc., La Grange Park, 2013).Google Scholar
  30. 30.
    G. G. Andreev and A. N. D’yachenko, Introduction to Chemical Technology of Nuclear Fuel (Tomsk. Politekh. Univ., Tomsk, 2008) [in Russian].Google Scholar
  31. 31.
    V. T. Orekhov, A. A. Vlasov, E. I. Kozlova, et al., in Proceedings of the 5th All-Russia Conference on Physicochemical Processes During Atoms and Molecule Selection, Zvenigorod, 2000, p.25.Google Scholar
  32. 32.
    J. N. Zoller, R. S. Rosen, and M. A. Holliday, Depleted Uranium Hexafluoride Management Program, The Technology Assessment Report (Lawrence Livermore National Lab., California, 1995), Vol.1.Google Scholar
  33. 33.
    H. Zhang and Y. Bai, China’s Access to Uranium Resources (Harvard Univ. Press, Cambridge, 2015).Google Scholar
  34. 34.
    S. G. Brandberg, Nucl. Technol. 18, 177 (1973).CrossRefGoogle Scholar
  35. 35.
    Water Chemistry of Nuclear Reactor Systems, Ed. by C. J. Wood (Thomas Telford, London, 2001).Google Scholar
  36. 36.
    G. A. Kravchenko, S. V. Rassamagin, S. V. Rusanov, and I. Yu. Kosarev, At. Stroit., No. 26, 26 (2016).Google Scholar
  37. 37.
    L. R. Morss, N. M. Edelstein, J. Fuger, and J. J. Katz, The Chemistry of the Actinide and Trans-Actinide Elements (Springer, Dordrecht, 2008).Google Scholar
  38. 38.
    K. C. Radford, W. L. Lyon, and J. E. Hart, Am. Ceram. Soc. Bull. 58, 219 (1979).Google Scholar
  39. 39.
    Zh. I. Alferov, Semiconductors 32, 1 (1998).CrossRefGoogle Scholar
  40. 40.
    H. Nasim and Y. Jamil, Laser Phys. Lett. 10, 043001 (2013).CrossRefGoogle Scholar
  41. 41.
    Sh. Nakamura, M. Senoh, S. Nagahama, et al., Jpn. J. Appl. Phys., B 35, L74 (1996).CrossRefGoogle Scholar
  42. 42.
    P. D. Yang, Proc. SPIE 5349, 18 (2004).CrossRefGoogle Scholar
  43. 43.
    V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford Univ. Press, Oxford, 2003).CrossRefGoogle Scholar
  44. 44.
    R. Pecharromán-Gallego, Lasers Eng. 24, 277 (2013).Google Scholar
  45. 45.
    Quantum Cascade Lasers, Ed. by V. N. Stavrou (InTech, London, 2017).Google Scholar
  46. 46.
    W. Huang, Y. Chiu, W. Charles, et al., Opt. Express 20, 2539 (2012).CrossRefGoogle Scholar
  47. 47.
    Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photon. 6, 432 (2012).CrossRefGoogle Scholar
  48. 48.
    M. S. Vitiello, G. Scalari, B. Williams, et al., Opt. Express 23, 5167 (2015).CrossRefGoogle Scholar
  49. 49.
    L. N. Kurbatov, Optoelectronics of Visible and Infrared Spectral Ranges (Fizmatkniga, Moscow, 2013) [in Russian].Google Scholar
  50. 50.
    F. J. Duarte, Tunable Laser Applications (CRC, New York, 2016).Google Scholar
  51. 51.
    G. Yu. Grigoriev, S. L. Malyugin, Sh. Sh. Nabiev, et al., Appl. Phys. B 101, 683 (2010).CrossRefGoogle Scholar
  52. 52.
    G. N. Rao and A. Karpf, Appl. Opt. 50, A100 (2011).CrossRefGoogle Scholar
  53. 53.
    Cavity Ring-Down Spectroscopy: Techniques and Applications, Ed. by G. Berden and R. Engeln (Wiley-Blackwell, Chichester, 2009).Google Scholar
  54. 54.
    Q. Zhang, J. Chang, Q. Wang, et al., Sensors 18, 42 (2018).CrossRefGoogle Scholar
  55. 55.
    R. Centeno, J. Mandon, S. Cristescu, and F. Harren, Opt. Express 22, 27985 (2014).CrossRefGoogle Scholar
  56. 56.
    T. Starecki and P. Z. Wieczorek, Sensors 17, 2528 (2017).CrossRefGoogle Scholar
  57. 57.
    A. V. Saprygin, O. V. Elistratov, V. A. Kalashnikov, et al., Mass-Spektrom. 8 (4), 20 (2011).Google Scholar
  58. 58.
    V. P. Gusev, S. V. Tkachev, and V. A. Pavlikov, Anal. Kontrol’ 13 (4), 193 (2009).Google Scholar
  59. 59.
    Nuclear Security: Global Directions for the Future (IAEA, London, 2006).Google Scholar
  60. 60.
    G. Yu. Grigor’ev, Sh. Sh. Nabiev, A. I. Nadezhdinskii, et al., Opt. Atmos. Okeana 18 (9), 797 (2005).Google Scholar
  61. 61.
    A. Berezin, G. Grigoriev, Sh. Nabiev, et al., Spectrochim. Acta, A 66, 796 (2007).CrossRefGoogle Scholar
  62. 62.
    Sh. Sh. Nabiev, V. B. Semenov, D. B. Stavrovskii, et al., in Proceedings of the 18th Symposium and School on High Resolution Molecular Spectroscopy, Tomsk, 2015, p.50.Google Scholar
  63. 63.
    N. Bandyopadhyay, M. Chen, S. Sengupta, et al., Opt. Express 23, 211539 (2015).CrossRefGoogle Scholar
  64. 64.
    R. Lewicki, A. A. Kosterev, F. Toor, et al., Proc. SPIE 7608, 1 (2010).Google Scholar
  65. 65.
    Sh. Sh. Nabiev, V. M. Semenov, D. B. Stavrovskii, P. L. Men’shikov, L. I. Men’shikov and G. Yu. Grigor’ev, Russ. J. Phys. Chem. B 11, 61 (2017).CrossRefGoogle Scholar
  66. 66.
    J. Shultis and R. Faw, Fundamentals of Nuclear Science and Engineering (CRC, New York, 2007).Google Scholar
  67. 67.
    J. J. Katz and E. Rabinowitch, The Chemistry of Uranium, Part 1: The Element, its Binary and Related Compounds (McGraw-Hill, New York, London, Toronto, 1951).Google Scholar
  68. 68.
    L. S. Rothman, I. E. Gordon, A. Barbe, et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013).CrossRefGoogle Scholar
  69. 69.
    D. Allan, Proc. IEEE 54, 221 (1966).CrossRefGoogle Scholar
  70. 70.
    Report INFCIRC/640VIAEA (IAEA, Vienna, 2005).Google Scholar
  71. 71.
    G. Yu. Grigoriev and S. A. Senchenkov, in Proceedings of the 11th Workshop on Separation Phenomena in Liquids and Gases, St. Petersburg, 2010, p.56.Google Scholar
  72. 72.
    G. Yu. Grigoriev and Sh. Sh. Nabiev, in Proceedings of the 9th International Conference on Tunable Diode Laser Spectroscopy TDLS-2013, Moscow, 2013, p.20.Google Scholar
  73. 73.
    J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley-Interscience, New York, 2006). http://www.amazon.com/Atmospheric-Chemistry-Physics-Pollution-Climate/dp/0471720186/ref=pd_sim_b_1. Google Scholar
  74. 74.
    Water Chemistry of Nuclear Reactor Systems, Ed. by C. J. Wood (Thomas Telford, London, 2001).Google Scholar
  75. 75.
    B. M. Andreev, Ya. D. Zel’venskii, and S. G. Katal’nikov, Heavy Isotopes of Hydrogen in Nuclear Technology (Energoatomizdat, Moscow, 1987) [in Russian].Google Scholar
  76. 76.
    L. F. Belovodskii, V. K. Gaevoi, and V. I. Grishmanovskii, Tritium (Atomizdat, Moscow, 1985) [in Russian].Google Scholar
  77. 77.
    G. Yu. Grigoriev, Sh. Sh. Nabiev, A. I. Nadezhdinskii, et al., in Proceedings of the International Workshop on Non-Proliferation and Nuclear Materials, Obninsk, 2009, p.46.Google Scholar
  78. 78.
    B. E. Brumfield, M. S. Taubman, and M. C. Phillips, Photonics 3, 33 (2016).CrossRefGoogle Scholar
  79. 79.
    Y. Yu, N. P. Sanchez, R. J. Griffin, and F. K. Tittel, Opt. Express 24, 10391 (2016).CrossRefGoogle Scholar
  80. 80.
    M.-S. Yim and F. Caron, Prog. Nucl. Energy 48, 2 (2006).CrossRefGoogle Scholar
  81. 81.
    Radiation Situation on the Territory of Russia and Neighboring Countries in 2016 (Taifun, Obninsk, 2017) [in Russian].Google Scholar
  82. 82.
    M. Wahlen, R. S. Eng, and K. W. Nill, Appl. Opt. 16, 2350 (1977).CrossRefGoogle Scholar
  83. 83.
    D. Labrie and J. Reid, Appl. Phys. 24, 381 (1981).CrossRefGoogle Scholar
  84. 84.
    I. Galli, S. Bartalini, R. Ballerini, et al., Optica 3, 385 (2016).CrossRefGoogle Scholar
  85. 85.
    G. Genoud, M. Vainio, H. Phillips, et al., Opt. Lett. 40, 1342 (2015).CrossRefGoogle Scholar
  86. 86.
    A. Elia, P. M. Lugara, C. di Franco, et al., Sensors 9, 9616 (2009).CrossRefGoogle Scholar
  87. 87.
    J. Hodgkinson and R. P. Tatam, Meas. Sci. Technol. 24, 012004 (2013).CrossRefGoogle Scholar
  88. 88.
    P. Patimisco, G. Scamarcio, and F. K. Tittel, Sensors 14, 6165 (2014).CrossRefGoogle Scholar
  89. 89.
    N. A. Zvereva, Sh. Sh. Nabiev, and Yu. N. Ponomarev, Structure and Properties of Water Molecular Complexes with Trace Atmospheric Gases (Inst. Opt. Atmosf. Sib. Otdel. RAN, Tomsk, 2003) [in Russian].Google Scholar
  90. 90.
    M. Nikodem and G. Wysocki, Sensors 12, 16466 (2012).CrossRefGoogle Scholar
  91. 91.
    E. M. Balashov, G. V. Golubkov, and G. K. Ivanov, Sov. Phys. JETP 59, 1188 (1984).Google Scholar
  92. 92.
    G. K. Ivanov and G. V. Golubkov, Sov. Phys. JETP 72, 783 (1991).Google Scholar
  93. 93.
    G. V. Golubkov and G. K. Ivanov, J. Exp. Theor. Phys. 77, 574 (1993).Google Scholar
  94. 94.
    G. V. Golubkov, M. G. Golubkov, and A. N. Romanov, J. Exp. Theor. Phys. 94, 489 (2002).CrossRefGoogle Scholar
  95. 95.
    S. O. Adamson, R. J. Buenker, G. V. Golubkov, M. G. Golubkov, and A. I. Dement’ev, Russ. J. Phys. Chem. B 3, 195 (2009)].CrossRefGoogle Scholar
  96. 96.
    G. V. Golubkov, M. G. Golubkov, and R. J. Buenker, J. Exp. Theor. Phys. 112, 187 (2011).CrossRefGoogle Scholar
  97. 97.
    G. V. Golubkov, G. K. Ivanov, and E. M. Balashov, Khim. Fiz. 14 (8), 38 (1995).Google Scholar
  98. 98.
    G. V. Golubkov, M. G. Golubkov, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 412 (2011).CrossRefGoogle Scholar
  99. 99.
    G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 6, 112 (2012).CrossRefGoogle Scholar
  100. 100.
    G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 57, 461 (2012).CrossRefGoogle Scholar
  101. 101.
    G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 58, 424 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. V. Golubkov
    • 1
    • 2
  • G. Yu. Grigoriev
    • 2
  • Sh. Sh. Nabiev
    • 2
  • L. A. Palkina
    • 2
  • M. G. Golubkov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations