Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 5, pp 916–922 | Cite as

Elastoviscous Systems Based on Solutions of Chitosan–Methyl Acrylate and Chitosan Succinamide–Methyl Acrylate Copolymers

  • M. V. BazunovaEmail author
  • S. V. Kolesov
  • V. V. Chernova
  • E. I. Kulish
Physical Chemistry of Polymer Materials
  • 5 Downloads

Abstract

Rheological studies of solutions of amphiphilic copolymers based on hydrophilic polysaccharides chitosan (CT) and chitosan succinamide (CTS) sodium salt with methyl acrylate (MA) synthesized by radical copolymerization have been conducted. It has been found that the hydrophobic interaction of poly(methyl acrylate) blocks in solutions of CT–MA and CTS–MA copolymers leads to an increase in the degree of structuring of macromolecules; this feature leads to the formation of an elastoviscous system without introducing of an additional crosslinking agent.

Keywords

chitosan chitosan succinamide sodium salt radical copolymerization hydrophobic interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Andreeva, A. I. Fomenkov, A. Kh. Islamov, A. I. Kuklin, O. E. Philippova, and A. R. Khokhlov, Polymer Sci., Ser. A 47, 194 (2005).Google Scholar
  2. 2.
    O. E. Philippova and E. V. Korchagina, Polymer Sci., Ser. A 54, 552 (2012).CrossRefGoogle Scholar
  3. 3.
    Zh. Debrier and V. G. Babak, Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D.I. Mendeleeva) 52 (1), 75 (2008).Google Scholar
  4. 4.
    A. L. Villemson, P. Couvreur, R. Gref, and N. I. Larionova, Polymer Sci., Ser. A 49, 708 (2007).CrossRefGoogle Scholar
  5. 5.
    Yu. A. Shashkina, V. A. Smirnov, and O. E. Filippova, Vestn. Mosk. Univ., Ser. Fiz. Astron., No. 6, 42 (2005).Google Scholar
  6. 6.
    B. Glass, J. NZMRT 40 (2), 13 (1997).Google Scholar
  7. 7.
    S. A. Uspenskii, A. N. Sonina, G. A. Vikhoreva, et al., Khim. Volokna, No. 6, 18 (2010).Google Scholar
  8. 8.
    G. G. Nikiforova, V. G. Vasil’ev, L. Z. Rogovina, L. V. Dubrovina, L. I. Komarova, V. V. Shaposhnikova, A. N. Ryabev, S. N. Salazkin, and V. S. Papkov, Polymer Sci., Ser. A 45, 1046 (2003).Google Scholar
  9. 9.
    V. F. Smirnov, A. E. Mochalova, I. V. Belysheva, et al., Vestn. Nizhegor. Univ. im. N.I. Lobachevskogo, No. 5, 95 (2009).Google Scholar
  10. 10.
    A. S. Berezin, E. A. Lomkova, and Yu. A. Skorik, Russ. Chem. Bull. 61, 781 (2012).CrossRefGoogle Scholar
  11. 11.
    V. G. Baranov, Yu. V. Brestkin, S. A. Agranova, et al., Vysokomol. Soedin., Ser. B 28, 841 (1986).Google Scholar
  12. 12.
    Shih-Chang Hsu, Trong-Ming Don, and Wen-Yen Chiu, Polym. Degrad. Stab. 75, 73 (2002).CrossRefGoogle Scholar
  13. 13.
    E. N. Fedoseeva, Yu. D. Semchikov, and L. A. Smirnova, Polymer Sci., Ser. B 48, 295 (2006).CrossRefGoogle Scholar
  14. 14.
    G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  15. 15.
    J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Bazunova
    • 1
    Email author
  • S. V. Kolesov
    • 1
  • V. V. Chernova
    • 1
  • E. I. Kulish
    • 1
  1. 1.Bashkir State UniversityUfaRussia

Personalised recommendations