Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 142–154 | Cite as

Poly(3-Hydroxybutyrate) Matrices Modified with Iron(III) Complexes with Tetraphenylporphyrin. Analysis of the Structural Dynamic Parameters

  • S. G. Karpova
  • A. A. Olkhov
  • A. V. Bakirov
  • S. N. Chvalun
  • N. G. Shilkina
  • A. A. Popov
Chemical Physics of Polymer Materials
  • 9 Downloads

Abstract

The effect of small additions of the iron(III) complex with tetraphenylporphyrin (0–5%) on the structure and properties of ultrathin fibers based on poly(3-hydroxybutyrate) (PHB) was studied by differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), EPR probe method, and scanning electron microscopy. When tetramethylporphyrin was added to the PHB fibers, the crystallinity significantly increased, and the molecular mobility in the amorphous regions of the polymer decreased. The thermal treatment of the fibers (annealing at 140°C) led to significantly increased crystallinity and decreased molecular mobility in the amorphous regions of the PHB fibers. The addition of tetramethylporphyrin to the PHB fibers led to a sharp decrease in crystallinity. Ozonolysis of the fibers at small treatment times caused a considerable decrease in their molecular mobility (to 5 h), while prolonged ozonolysis led to increased mobility. The obtained fibrous materials have bactericidal properties and will find use in the development of antibacterial and antitumor therapeutic systems.

Keywords

stable TEMPO radical correlation times ultrathin fibers poly(3-hydroxybutyrate) EPR method oxidation with ozone thermal treatment binary amorphous phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Siepmann, R. A. Siegel, and M. J. Rathbone, Fundamentals and Applications of Controlled Release Drug Delivery (Springer, New York, 2012).CrossRefGoogle Scholar
  2. 2.
    Polymers in Biology and Medicine, Ed. by M. Jenkins (CRC, New York, 2007).Google Scholar
  3. 3.
    J. R. Weiser and W. M. Saltzman, J. Control. Release 190, 664 (2014).CrossRefGoogle Scholar
  4. 4.
    D. J. McClements, Adv. Colloid Interface Sci. 219, 27 (2015).CrossRefGoogle Scholar
  5. 5.
    M. K. Nguyen and E. Alsberg, Prog. Polym. Sci. 39, 1235 (2014).CrossRefGoogle Scholar
  6. 6.
    N. D. Oltarzhevskaya, M. A. Korovina, A. V. Boiko, et al., Med. Alfavit 3–4 (18), 53 (2014).Google Scholar
  7. 7.
    L. I. Korytova, V. P. Sokurenko, E. A. Maslyukova, et al., Ross. Bioterapevticheskii Zh. 14 (4), 99 (2015).Google Scholar
  8. 8.
    M. Jenkins, Polymers in Biology and Medicine (CRC, New York, 2007; Nauchnyi Mir, Moscow, 2011).Google Scholar
  9. 9.
    E. V. Sytina, T. Kh. Tenchurin, S. G. Rudyak, et al., Mol. Med., No. 6, 1728 (2014).Google Scholar
  10. 10.
    S. G. Karpova, A. L. Iordanskii, and M. V. Motyakin, A. A. Ol’khov, O. V. Staroverova, S. M. Lomakin, N. G. Shilkina, S. Z. Rogovina, and A. A. Berlin, Polymer Sci., Ser. A 57, 131 (2015).CrossRefGoogle Scholar
  11. 11.
    A. A. Ol’khov, S. G. Karpova, O. V. Staroverova, et al., Khim. Volokna, No. 4, 28 (2016).Google Scholar
  12. 12.
    S. G. Karpova, A. A. Ol’khov, A. L. Iordanskii, S. M. Lomakin, N. S. Shilkina, A. A. Popov, K. Z. Gumargalieva and A. A. Berlin, Polymer Sci., Ser. A 58, 76 (2016).CrossRefGoogle Scholar
  13. 13.
    E. L. Kucherenko, R. Yu. Kosenko, A. G. Filatova, et al., in Proc. of ht 21st Annual Conference of Semenov Inst. of Chem. Physics Russian Acad. Sci., Sect. Dynamics of Chemical and Biological Processes (Ross. Univ. Druzhby Narodov, Moscow, 2016), p. 16.Google Scholar
  14. 14.
    A. V. Lobanov, O. V. Nevrova, V. A. Ilatovskii, et al., Makrogeterotsikly 4 (2), 132 (2011).Google Scholar
  15. 15.
    Yu. N. Filatov, Electric Formation of Fiber Materials (EF-Process) (Neft’ Gaz, Moscow, 1997) [in Russian].Google Scholar
  16. 16.
    D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Res. A 120, 155 (1996).CrossRefGoogle Scholar
  17. 17.
    V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).CrossRefGoogle Scholar
  18. 18.
    A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  19. 19.
    J. Opfermann, Rechentech. Datenverarbeit. 23 (3), 26 (1985).Google Scholar
  20. 20.
    Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics, Ed. by S. Vyazovkin, N. Koga, and C. V. Schick (Elsevier, Amsterdam, Boston, London, 2002), Vol. 3.Google Scholar
  21. 21.
    Z. Wang, B. Sun, M. Zhang, et al., J. Bioact. Compat. Polym. 28, 154 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Ramakrishna, K. Fujihara, W. Teo, et al., An Introduction to Electrospinning and Nanofibers (World Sci., Singapore, 2005).CrossRefGoogle Scholar
  23. 23.
    S. L. Bazhenov, Dokl. Phys. Chem. 441, 227 (2011).CrossRefGoogle Scholar
  24. 24.
    S. G. Karpova, A. L. Iordanskii, N. S. Klenina, A. A. Popov, S. M. Lomakin, N. G. Shilkina, and A. V. Rebrov, Russ. J. Phys. Chem. B 7, 225 (2013).CrossRefGoogle Scholar
  25. 25.
    S. G. Karpova, A. A. Ol’khov, N. G. Shilkina, A. A. Popov, A. G. Filatova, E. L. Kucherenko, and A. L. Iordanskii, Polymer Sci., Ser. A 59, 58 (2017).CrossRefGoogle Scholar
  26. 26.
    A. A. Olkhov, V. S. Markin, R. Yu. Kosenko, et al., Russ. J. Appl. Chem 88, 308 (2015).CrossRefGoogle Scholar
  27. 27.
    A. A. Olkhov, A. L. Iordanskii, and G. E. Zaikov, J. Charac. Develop. Novel Mater. 6 (1), 9 (2014).Google Scholar
  28. 28.
    A. N. Ozerin, Cand. Sci. (Chem.) Dissertation (Karpov Inst. Phys. Chem., Moscow, 1977).Google Scholar
  29. 29.
    S. G. Karpova, A. A. Popov, and G. E. Zaikov, Vysokomol. Soedin. 33, 931 (1991).Google Scholar
  30. 30.
    S. G. Karpova, A. L. Iordanskii, A. A. Popov, N. G. Shilkina, S. M. Lomakin, M. A. Shcherbin, S. N. Chvalun, and A. A. Berlin, Russ. J. Phys. Chem. B 6, 72 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. G. Karpova
    • 1
  • A. A. Olkhov
    • 1
    • 2
  • A. V. Bakirov
    • 3
    • 4
  • S. N. Chvalun
    • 3
    • 4
  • N. G. Shilkina
    • 1
  • A. A. Popov
    • 2
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  4. 4.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations