Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 3, pp 473–480 | Cite as

Calculation of the Nucleation Barrier and Interfacial Free Energy of New-Phase nuclei by the thermodynamic integration method using molecular dynamics simulation data

  • A. V. Mokshin
  • B. N. Galimzyanov
Dynamics of Phase Transitions

Abstract

An approach to determining the nucleation barrier and interfacial free energy (surface tension) based on molecular dynamics simulations of structural transformations, in particular, the formation of new phase nuclei, is reported. The approach is based on the thermodynamic integration method, wherein key elements are trajectories characterizing the potential energy change, which are obtained from independent numerical experiments. An important feature of the approach is its applicability to both equilibrium and nonequilibrium systems, as well as the possibility of determining the above thermodynamic characteristics for small new-phase nuclei, with a significant curvature of the surface. For example, we present the temperature dependencies of the surface tension of water droplet nuclei for water vapor nucleation and of the nucleation barrier to crystal nucleation in two model glassy systems, which are computed within the framework of the proposed approach. The calculated values of the surface tension coefficient of water droplet nuclei are compared with the available experimental data.

Keywords

thermodynamic integration molecular dynamics nucleation barrier free energy surface tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2017).Google Scholar
  2. 2.
    A. G. Grivtsov, Molecular Dynamics Method in Physical Chemistry, Ed. by Yu. K. Tovbin (Nauka, Moscow, 1996) [in Russian].Google Scholar
  3. 3.
    G. G. Malenkov, Colloid. J. 72, 653 (2010).CrossRefGoogle Scholar
  4. 4.
    G. G. Malenkov, J. Struct. Chem. 54, S252 (2013).CrossRefGoogle Scholar
  5. 5.
    S. V. Shevkunov, Khim. Fiz. 22 (1), 90 (2003).Google Scholar
  6. 6.
    V. S. Neverov and A. V. Komolkin, Russ. J. Phys. Chem. B 4, 217 (2010).CrossRefGoogle Scholar
  7. 7.
    B. J. Berne and G. D. Harp, Adv. Chem. Phys. 17, 63 (1970).Google Scholar
  8. 8.
    A. V. Mokshin, Theor. Math. Phys. 183, 449 (2015).CrossRefGoogle Scholar
  9. 9.
    G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578 (1974).CrossRefGoogle Scholar
  10. 10.
    R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 57, 2607 (1986).CrossRefGoogle Scholar
  11. 11.
    R. M. Lynden-Bell, J. S. van Duijneveldt, and D. Frenkel, Mol. Phys. 80, 80 (1993).CrossRefGoogle Scholar
  12. 12.
    J. S. van Duijneveldt and D. Frenkel, J. Chem. Phys. 96, 4655 (1992).CrossRefGoogle Scholar
  13. 13.
    S. Jungblut and C. Dellago, Eur. Phys. J. E 39, 77 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. USA 99, 12562 (2002).CrossRefGoogle Scholar
  15. 15.
    G. Bussi, A. Laio, and M. Parrinello, Phys. Rev. Lett. 96, 090601 (2006).CrossRefGoogle Scholar
  16. 16.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 2006).Google Scholar
  17. 17.
    D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, 2001).Google Scholar
  18. 18.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Moscow, 1975) [in Russian].Google Scholar
  19. 19.
    V. M. Fokin, E. D. Zanotto, N. S. Yuritsyn, and J.W. P. Schmelzer, J. Non-Cryst. Solids 352, 2681 (2006).CrossRefGoogle Scholar
  20. 20.
    D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Frenkel Oxford, 2000).Google Scholar
  21. 21.
    J. Q. Broughton and G. H. Gilmer, J. Chem. Phys. 84, 5759 (1986).CrossRefGoogle Scholar
  22. 22.
    R. L. Davidchack and B. B. Laird, Phys. Rev. Lett. 85, 4751 (2000).CrossRefGoogle Scholar
  23. 23.
    D. I. Zhukhovitskii, Colloid. J. 72, 188 (2010).CrossRefGoogle Scholar
  24. 24.
    F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).CrossRefGoogle Scholar
  25. 25.
    A. V. Mokshin and B. N. Galimzyanov, J. Phys. Chem. B 116, 11959 (2012).CrossRefGoogle Scholar
  26. 26.
    P. R. ten Wolde, M. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).CrossRefGoogle Scholar
  27. 27.
    M. Dzugutov, Phys. Rev. Lett. 70, 2924 (1993).CrossRefGoogle Scholar
  28. 28.
    A. V. Mokshin and J.-L. Barrat, J. Chem. Phys. 130, 034502 (2009).CrossRefGoogle Scholar
  29. 29.
    A. V. Mokshin, B. N. Galimzyanov, and J.-L. Barrat, Phys. Rev. E 87, 062307 (2013).CrossRefGoogle Scholar
  30. 30.
    A. V. Mokshin and B. N. Galimzyanov, J. Chem. Phys. 142, 104502 (2015).CrossRefGoogle Scholar
  31. 31.
    V. P. Skripov, Metastable Liquid (Nauka, Moscow, 1972) [in Russian].Google Scholar
  32. 32.
    E. B. Moore and V. Molinero, J. Chem. Phys. 130, 244505 (2009).CrossRefGoogle Scholar
  33. 33.
    E. B. Moore and V. Molinero, Nature 479, 506 (2011).CrossRefGoogle Scholar
  34. 34.
    F. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).CrossRefGoogle Scholar
  35. 35.
    A. V. Mokshin and B. N. Galimzyanov, J. Chem. Phys. 140, 024104 (2014).CrossRefGoogle Scholar
  36. 36.
    H. White and J. V. Sengers, IAPWS Release on Surface Tension of Ordinary Water Substance (IAPWS, 2014). http://www.iapws.org/relguide/Surf-H2O-2014.pdf.Google Scholar
  37. 37.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).CrossRefGoogle Scholar
  38. 38.
    H. W. Horn, W. C. Swope, and J. W. Pitera, J. Chem. Phys. 120, 9665 (2004).CrossRefGoogle Scholar
  39. 39.
    J. L. F. Abascal, E. Sanz, R. G. Fernandez, and C. Vega, J. Chem. Phys. 122, 234511 (2006).CrossRefGoogle Scholar
  40. 40.
    J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of PhysicsKazan Federal UniversityKazanRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations