Russian Journal of Physical Chemistry B

, Volume 10, Issue 2, pp 245–259 | Cite as

Chemical physics of cellulose nitration

  • S. V. Stovbun
  • S. N. Nikol’skii
  • V. P. Mel’nikov
  • M. G. Mikhaleva
  • Ya. A. Litvin
  • A. N. Shchegolikhin
  • D. V. Zlenko
  • V. A. Tverdislov
  • D. S. Gerasimov
  • A. D. Rogozin
Kinetics and Mechanism of Chemical Reactions. Catalysis


The physical mechanisms responsible for the kinetics of nitration of cellulose raw materials of different origin have been studied. It has been shown that the main nitration rate-limiting factor is the speed of untwisting of supercoiled cellulose fibers. This process limits the penetration of nitrating agents into microcrystalline regions and, thus, the total reaction rate. The constructed physical model provides an adequate explanation of all the experimentally observed features of the cellulose nitration process, particularly as a function of cellulose origin (cotton, flax, wood) and preparation/treatment methods (sulfite, sulfate, bleached, refined with sulfurous or boric acids or acetone). The theoretical results have been tested in practice.


cellulose nitration physical model structure formation hierarchical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Nikitin, Chemistry of Wood and Cellulose (Akad. Nauk SSSR, Moscow, Leningrad, 1962) [in Russian].Google Scholar
  2. 2.
    I. L. Knunyants and N. S. Zefirov, Chemical Encyclopedy (Sov. Entsiklopediya, Moscow, 1988) [in Russian].Google Scholar
  3. 3.
    E. M. Belova, N. G. Vais, V. F. Sopin, A. I. Kazakov, Yu. I. Rubtsov, G. B. Manelis, and G. N. Marchenko, Russ. Chem. Bull. 38, 2244 (1989).CrossRefGoogle Scholar
  4. 4.
    V. A. Rafeev, Yu. L. Rubtsov, T. V. Sorokina, and N. V. Chukanov, Russ. Chem. Bull. 48, 66 (1999).CrossRefGoogle Scholar
  5. 5.
    V. I. Kovalenko, V. F. Sopin, and G. M. Khrapkovskii, Structural Kinetic Features of Preparation and Thermal Degradation of Cellulose Nitrate (Nauka, Moscow, 2005) [in Russian].Google Scholar
  6. 6.
    G. N. Marchenko, V. F. Sopin, et al., Vysokomol. Soedin., No. 5, 1066 (1989).Google Scholar
  7. 7.
    V. A. Rafeev, Yu. L. Rubtsov, and T. V. Sorokina, Russ. Chem. Bull. 45, 328 (1996).CrossRefGoogle Scholar
  8. 8.
    V. A. Rafeev, Yu. L. Rubtsov, and T. V. Sorokina, Russ. Chem. Bull. 45, 1879 (1996).CrossRefGoogle Scholar
  9. 9.
    A. I. Mikhailov, L. P. Bel’kova, and V. S. Gromov, Khim. Drev., No. 6, 50 (1980).Google Scholar
  10. 10.
    A. I. Mikhailov, L. P. Bel’kova, and V. S. Gromov, Khim. Drev., No. 6, 59 (1980).Google Scholar
  11. 11.
    E. T. Denisov, O. M. Sarkisov, and G. I. Likhtenshtein, Chemical Kinetics (Khimiya, Moscow, 2000) [in Russian].Google Scholar
  12. 12.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Bull. Exp. Biol. Med. 154, 34 (2012).CrossRefGoogle Scholar
  13. 13.
    V. A. Tverdislov, Biophysics 58, 128 (2013).CrossRefGoogle Scholar
  14. 14.
    S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 317 (2012).CrossRefGoogle Scholar
  15. 15.
    D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 499 (2014).CrossRefGoogle Scholar
  16. 16.
    F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, Int. J. Biol. Macromol. 14, 170 (1992).CrossRefGoogle Scholar
  17. 17.
    G. C. Ruben, G. H. Bokelman, and W. Krakow, Plant Cell Wall 399, 78 (1989).Google Scholar
  18. 18.
    K. Muhlethaler, Ann. Rev. Plant Phys. 42 (18), 24 (1967).Google Scholar
  19. 19.
    A. N. J. Heyn, J. Cell Biol. 9, 181 (1966).Google Scholar
  20. 20.
    R. H. Newman, Solid State Nucl. Magn. Reson., 15 (1999).Google Scholar
  21. 21.
    A. N. Fernandes, L. H. Thomasb, C. M. Altanerc, et al., Proc. Natl. Acad. Sci. 108, E1195 (2011).CrossRefGoogle Scholar
  22. 22.
    C. Somerville, Ann. Rev. Cell Dev. Biol. 22, 53 (2006).CrossRefGoogle Scholar
  23. 23.
    G. Murch, Diffusion in Crystalline Solids, N.Y., Acad. Press, 1984.Google Scholar
  24. 24.
    C. K. Ingold, Structure and Mechanism in Organic Chemistry (Cornell Univ., Ithaca, 1969).Google Scholar
  25. 25.
    V. I. Gol’danskii, L. I. Trakhtenberg, and V. N. Flerov, Tunneling Phenomena in Chemical Physics (Nauka, Moscow, 1986) [in Russian].Google Scholar
  26. 26.
    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 2007).Google Scholar
  27. 27.
    E. V. Novozhilov, D. G. Chukhchin, K. Yu. Terent’ev, and I. A. Khadyko, Khim. Rastit. Syr’ya, No. 2, 15 (2012).Google Scholar
  28. 28.
    A. A. Silin, Friction and We (Nauka, Moscow, 1987) [in Russian].Google Scholar
  29. 29.
    G. Considine, Van Norstrand’s Scientific Encyclopedia (Wiley, New York, 2006).Google Scholar
  30. 30.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon Press, New York, 1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Stovbun
    • 1
  • S. N. Nikol’skii
    • 1
  • V. P. Mel’nikov
    • 1
  • M. G. Mikhaleva
    • 1
  • Ya. A. Litvin
    • 1
  • A. N. Shchegolikhin
    • 1
  • D. V. Zlenko
    • 1
  • V. A. Tverdislov
    • 1
  • D. S. Gerasimov
    • 2
  • A. D. Rogozin
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Aleksin Chemical PlantAleksin, Tula oblastRussia

Personalised recommendations