Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 1, pp 100–108 | Cite as

Longitudinal variations of the ionospheric, plasmaspheric, and total electron contents in December 2009

  • M. V. Klimenko
  • V. V. Klimenko
  • I. E. Zakharenkova
Chemical Physics of Atmospheric Phenomena
  • 25 Downloads

Abstract

The major morphological features of the global structure and longitudinal variations of the electron content distribution in the ionosphere–protonosphere system during the winter solstice for the solar activity minimum in 2009 are examined. It is demonstrated how the Weddell Sea anomaly and the longitudinal structure of the main ionospheric trough (depression in the concentration of light ions) manifest themselves through the total, ionospheric, and protonospheric electron contents. Based on model calculations, the specific features of longitudinal variations in the O+/H+ transition altitude are for the first time considered, which made it possible to estimate the altitude of the transition boundary from the ionosphere to the plasmasphere (protonosphere) for the selected conditions.

Keywords

ionosphere plasmasphere protonosphere longitudinal variations electron content main ionospheric trough Weddell Sea anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Knyazeva, Yu. V. Zubova, and A. A. Namgaladze, Vest. MGTU 13, 1068 (2010).Google Scholar
  2. 2.
    M. E. Hagan and J. M. Forbes, J. Geophys. Res. D 107 (24), 21 (2002).Google Scholar
  3. 3.
    D. Eccles, J. W. King, and P. Rothwell, J. Atmosph. Terr. Phys. 33, 371 (1971).CrossRefGoogle Scholar
  4. 4.
    N. A. Kochenova, Geomagn. Aeron. 27, 142 (1987).Google Scholar
  5. 5.
    M. G. Deminov and A. T. Karpachev, Geomagn. Aeron. 27, 76 (1987).Google Scholar
  6. 6.
    A. T. Karpachev, Geomagn. Aeron. 28, 46 (1988).Google Scholar
  7. 7.
    I. Horvath, J. Geophys. Res. A 111, 12317 (2006). doi: 10.1029/2006JA011679CrossRefGoogle Scholar
  8. 8.
    L. Scherliess, D. C. Thompson, and R. W. Schunk, J. Geophys. Res. A 113, 01311 (2008).Google Scholar
  9. 9.
    G. Jee, A. G. Burns, Y.-H. Kim, et al., J. Geophys. Res. A 114, 04307 (2009). doi: 10.1029/2008JA013801Google Scholar
  10. 10.
    I. Horvath and B. C. Lovell, J. Geophys. Res. A 114, 02306 (2009). doi: 10.1029/2008JA013719Google Scholar
  11. 11.
    H. Liu, S. V. Thampi, and M. Yamamoto, J. Geophys. Res. A 115, 01305 (2010). doi: 10.1029/2009JA014689CrossRefGoogle Scholar
  12. 12.
    C. H. Lin, C. C. Hsiao, J. Y. Liu, and C. H. Liu, J. Geophys. Res. A 112, 12305 (2007).Google Scholar
  13. 13.
    M. He, L. Liu, W. Wan, et al., J. Geophys. Res. A 114, A12309 (2009). doi: 10.1029/2009JA014175Google Scholar
  14. 14.
    G. Liu, T. J. Immel, S. L. England, K. K. Kumar, and G. Ramkumar, J. Geophys. Res. A 115, A04303 (2010).Google Scholar
  15. 15.
    S. Thampi, C. H. Lin, H. Liu, et al., J. Geophys. Res. A 114, A10318 (2009). doi: 10.1029/2009JA014439Google Scholar
  16. 16.
    E. Yizengaw, Int. J. Geophys. 2012, 342581 (2012). doi: 10.1155/2012/342581CrossRefGoogle Scholar
  17. 17.
    N. Lunt, L. Kersley, and G. J. Bailey, Radio Sci. 34, 725 (1999). doi: 10.1029/1999RS900002CrossRefGoogle Scholar
  18. 18.
    N. Balan, Y. Otsuka, T. Tsugawa, et al., Earth Planets Space 54, 71 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Belehaki, N. Jakowski, and B. W. Reinisch, Adv. Space Res. 33 (6) (2004). doi: 10.1029/1999RS900002CrossRefGoogle Scholar
  20. 20.
    M. Moser, M. Gende, C. Brunini, R. Ezquer, and D. Altadill, Adv. Space Res. 39, 841 (2007).CrossRefGoogle Scholar
  21. 21.
    G. Manju, S. Ravindran, C. V. Devasia, S. V. Thampi, and R. Sridharan, J. Atmosph. Sol.-Terr. Phys. 70, 1066 (2008).CrossRefGoogle Scholar
  22. 22.
    I. E. Zakharenkova, Iu. V. Cherniak, A. Krankowski, and I. I. Shagimuratov, Adv. Space Res. 52, 1827 (2013). doi: 10.1016/j.asr.2012.09.043CrossRefGoogle Scholar
  23. 23.
    E. Yizengaw, M. B. Moldwin, D. Galvan, et al., J. Atmosph. Sol.-Terr. Phys. 70, 1541 (2008).CrossRefGoogle Scholar
  24. 24.
    Yu. V. Cherniak, I. E. Zakharenkova, A. Krankowski, and I. I. Shagimuratov, Adv. Space Res. 50, 427 (2012).CrossRefGoogle Scholar
  25. 25.
    H. B. Lee, G. Jee, Y. H. Kim, and J. S. Shim, J. Geophys. Res. 118, 935 (2013). doi: 10.1002/jgra.50130CrossRefGoogle Scholar
  26. 26.
    M. A. Clilverd, N. P. Meredith, R. B. Yorne, et al., J. Geophys. Res. A 112, 11210 (2007). doi: 10.1029/ 2007JA012416CrossRefGoogle Scholar
  27. 27.
    F. W. Menk, S. T. Ables, R. S. Grew, M. A. Clilverd, and B. R. Sandel, J. Geophys. Res. A 117, 03215 (2012). doi: 10.1029/2011JA017071Google Scholar
  28. 28.
    V. V. Klimenko, A. T. Kapachev, and M. V. Klimenko, Russ. J. Phys. Chem. B 7, 611 (2013). doi: 10.7868/S0207401X13090070CrossRefGoogle Scholar
  29. 29.
    M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, and Yu. V. Cherniak, Adv. Space Res. 55, 2077 (2015). doi: 10.1016/j.asr.2014.06.027CrossRefGoogle Scholar
  30. 30.
    A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geophys. (PAGEOPH) 127, 219 (1988).CrossRefGoogle Scholar
  31. 31.
    A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).Google Scholar
  32. 32.
    V. V. Klimenko, M. V. Klimenko, and V. V. Bryukhanov, Mat. Model. 18 (3), 77 (2006).Google Scholar
  33. 33.
    M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006).CrossRefGoogle Scholar
  34. 34.
    M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Adv. Radio Sci. 5, 385 (2007).CrossRefGoogle Scholar
  35. 35.
    M. Hernández-Pajares, J. M. Juan, J. Sanz, et al., J. Geodesy. 83, 263 (2009). doi: 10.1007/s00190-008-0266-1CrossRefGoogle Scholar
  36. 36.
    Y.-H. Kuo, T. Wee, S. Sokolovskiy, et al., J. Meteorolog. Soc. Jpn. 82 (1B), 507 (2004).CrossRefGoogle Scholar
  37. 37.
    R. A. Heelis, W. R. Coley, A. G. Burrell, et al., Geophys. Rev. Lett. 36, L00C03 (2009). doi: 10.1029/2009GL038652CrossRefGoogle Scholar
  38. 38.
    N. Balan, C. Y. Chen, J. Y. Liu, and G. J. Bailey, Ind. J. Radio Space Phys. 41, 89 (2012).Google Scholar
  39. 39.
    N. Balan, C. Y. Chen, P. K. Rajesh, J. Y. Liu, and G. J. Bailey, J. Geophys. Res. A 117, 08316 (2012). doi: 10.1029/2012JA017846Google Scholar
  40. 40.
    N. M. Pedatella, J. M. Forbes, A. Maute, et al., J. Geophys. Res. A 116, 12309 (2011). doi: 10.1029/2011JA016600CrossRefGoogle Scholar
  41. 41.
    W. H. Bellchambers and W. R. Piggott, Nature 182, 1596 (1958).CrossRefGoogle Scholar
  42. 42.
    R. Penndorf, Antarct. Res. Ser. 4, 1 (1965).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. V. Klimenko
    • 1
    • 2
  • V. V. Klimenko
    • 1
  • I. E. Zakharenkova
    • 1
  1. 1.Western Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Waves PropagationRussian Academy of SciencesKaliningradRussia
  2. 2.Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations