Advertisement

Russian Journal of Physical Chemistry B

, Volume 9, Issue 5, pp 743–747 | Cite as

Flame synthesis of graphene layers at low pressure

  • N. G. Prikhod’koEmail author
  • Z. A. Mansurov
  • M. Auelkhankyzy
  • B. T. Lesbaev
  • M. Nazhipkyzy
  • G. T. Smagulova
Chemical Physics of Nanomaterials

Abstract

The synthesis of graphene layers on a nickel substrate in a butane–benzene–oxygen premixed flame at a pressure of 40–100 Torr is studied. It is demonstrated that, the temperature of 900–950°C and exposure time of 0.5 min are sufficient for synthesizing graphene layers on a nickel substrate. It is shown that, at a pressure of 45–55 Torr, single-layer graphene is predominantly formed. It is found that, at a pressure of 90 Torr and an exposure time of 0.5 min, monolayer graphite can be produced, but with a lower yield as compared to that prepared at 45–55 Torr. It is demonstrated that the degree of defectiveness of graphenes decreases with the exposure time, reaching a minimum value of I D /I G = 0.36.

Keywords

graphene graphene layers flame combustion butane pressure benzene Raman spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. C. Brodie, Phil. Trans. R. Soc. London 149, 249 (1859).CrossRefGoogle Scholar
  2. 2.
    D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).CrossRefGoogle Scholar
  3. 3.
    G. Ruess and F. Vogt, Monatsh. Chem. 78, 222 (1948).CrossRefGoogle Scholar
  4. 4.
    H. P. Boehm, A. Clauss, G. O. Fischer, and U. Z. Hofmann, Anorg. Allgem. Chem. 316, 119 (1962).CrossRefGoogle Scholar
  5. 5.
    H. P. Boehm, R. Setton, and E. Stumpp, Carbon 24, 241 (1986).CrossRefGoogle Scholar
  6. 6.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).CrossRefGoogle Scholar
  7. 7.
    A. K. Geim, Usp. Fiz. Nauk 181, 1285 (2011).CrossRefGoogle Scholar
  8. 8.
    A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Phys. Usp. 54, 227 (2011).CrossRefGoogle Scholar
  9. 9.
    Z. Li, H. Zhu, D. Xie, et al., Chem. Commun. 47, 3520 (2011).CrossRefGoogle Scholar
  10. 10.
    N. K. Memon, S. D. Tse, J. F. Al-Sharab, et al., Carbon 49, 5064 (2011).CrossRefGoogle Scholar
  11. 11.
    N. G. Prikhod’ko, B. T. Lesbaev, M. Auelkhankyzy, and Z. A. Mansurov, Russ. J. Phys. Chem. B 33, 61 (2014).CrossRefGoogle Scholar
  12. 12.
    F. Ossler, J. Wagner, S. Canton, and L. Wallenberg, Carbon 48, 4203 (2010).CrossRefGoogle Scholar
  13. 13.
    Z. A. Mansurov, J. Mater. Sci. Chem. Eng. 2, 1 (2014).Google Scholar
  14. 14.
    P. A. Tesner, Fiz. Goreniya Vzryva 15 (2), 3 (1979).Google Scholar
  15. 15.
    J. C. Shelton, H. R. Patil, and J. M. Blakely, Surf. Sci. 43, 493 (1974).CrossRefGoogle Scholar
  16. 16.
    L. C. Isett and J. M. Blakely, Surf. Sci. 58, 397 (1976).CrossRefGoogle Scholar
  17. 17.
    M. Eizenberg and J. M. Blakely, Surf. Sci. 82, 228 (1979).CrossRefGoogle Scholar
  18. 18.
    A. Reina, X. Jia, J. Ho, et al., Nano Lett. 9, 30 (2008).CrossRefGoogle Scholar
  19. 19.
    A. W. Robertson and J. H. Warner, Nano Lett. 11, 1182 (2011).CrossRefGoogle Scholar
  20. 20.
    S. J. Chae, F. Gune, K. K. Kim, et al., Adv. Mater. 21, 2328 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. G. Prikhod’ko
    • 1
    • 2
    Email author
  • Z. A. Mansurov
    • 1
  • M. Auelkhankyzy
    • 1
  • B. T. Lesbaev
    • 1
  • M. Nazhipkyzy
    • 1
  • G. T. Smagulova
    • 1
  1. 1.Institute of Combustion ProblemsNational Academy of Sciences of the Republic of KazakhstanAlmatyKazakhstan
  2. 2.Almaty University of Energetics and CommunicationsAlmatyKazakhstan

Personalised recommendations