Russian Journal of Physical Chemistry B

, Volume 8, Issue 8, pp 1087–1094 | Cite as

The Frenkel line and supercritical technologies

  • V. V. Brazhkin
  • A. G. Lyapin
  • V. N. Ryzhov
  • K. Trachenko
  • Yu. D. Fomin
  • E. N. Tsiok
Article

Abstract

At present, supercritical technologies use fluids (for example, CO2, H2O) at temperatures and pressures close to critical. It is not currently clear how important critical fluctuations are for dissolution processes and chemical reactions in supercritical fluids. At the same time, our recent work has shown that qualitative changes in the system behavior occurred also at temperatures and pressures much higher than critical. This paper briefly summarizes the latest results of the search and study of the parameters P and T of the changes of dynamic types in supercritical fluids. It turned out that this region of parameters corresponded to a narrow band, namely, the “Frenkel line.” Reaching this line with increasing temperature corresponds to the disappearance of shear excitations in the liquid at all frequencies. The Frenkel line can be considered as a boundary between the liquid and the dense gas at extremely high pressures far from the critical point. Recently, a simple and mathematically rigorous method for finding the Frenkel line was proposed based on analysis of the autocorrelation function of particle velocities. We suggest using the data of the Frenkel line parameters for actual fluids to move supercritical technologies into the region of extremely high pressures exceeding critical ones by tens and hundreds of times.

Keywords

microscopic dynamics of liquid and gas extremely high pressures fluid viscosity supercritical technologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, Amsterdam, 2007).Google Scholar
  2. 2.
    M. Grimsditch, R. Bhadra, and L. M. Torell, Phys. Rev. Lett. 62, 2616 (1989).CrossRefGoogle Scholar
  3. 3.
    T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, Phys. Rev. Lett. 102, 107402 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Hosokawa et al., Phys. Rev. Lett. 102, 105502 (2009).CrossRefGoogle Scholar
  5. 5.
    T. Scopigno, G. Ruocco, and F. Sette, Rev. Mod. Phys. 77, 881 (2005).CrossRefGoogle Scholar
  6. 6.
    F. Gorelli et al., Phys. Rev. Lett. 97, 245702 (2006).CrossRefGoogle Scholar
  7. 7.
    G. G. Simeoni et al., Nature Phys. 6, 503 (2010).CrossRefGoogle Scholar
  8. 8.
    V. M. Giordano and G. Monaco, Proc. Natl. Acad. Sci. 107, 21985 (2010).CrossRefGoogle Scholar
  9. 9.
    V. M. Giordano and G. Monaco, Phys. Rev. B 84, 052201 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Pelton et al., Phys. Rev. Lett. 111, 244502 (2013).CrossRefGoogle Scholar
  11. 11.
    V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, et al., Phys. Rev. E 85, 031203 (2012).CrossRefGoogle Scholar
  12. 12.
    V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, et al., JETP Lett. 95, 164 (2012).CrossRefGoogle Scholar
  13. 13.
    V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, et al., Phys. Usp. 55, 1061 (2012).CrossRefGoogle Scholar
  14. 14.
    V. V. Brazhkin and K. Trachenko, Phys. Today 65(11), 68 (2012).CrossRefGoogle Scholar
  15. 15.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Moscow, 1975) [in Russian].Google Scholar
  16. 16.
    D. C. Wallace, Phys. Rev. E 56, 4179 (1997).CrossRefGoogle Scholar
  17. 17.
    E. D. Chisolm and D. C. Wallace, J. Phys.: Condens. Matter 13, 739 (2011).Google Scholar
  18. 18.
    D. Bolmatov et al., J. Chem. Phys. 139, 234501 (2013).CrossRefGoogle Scholar
  19. 19.
    L. Xu, P. Kumar, S. V. Buldyrev, et al., Proc. Natl. Acad. Sci. 102, 16558 (2005).CrossRefGoogle Scholar
  20. 20.
    T. J. Keyes, Phys. Chem. A 101, 2921 (1997).CrossRefGoogle Scholar
  21. 21.
    V. I. Clapa, T. Kottos, and F. W. Starr, J. Chem. Phys. 136, 144504 (2012).CrossRefGoogle Scholar
  22. 22.
    Sh.-T. Liu, M. Blanco, and W. A. Goddard, J. Chem. Phys. 119, 11792 (2003).CrossRefGoogle Scholar
  23. 23.
    D. C. Wallace, Phys. Rev. E 58, 538 (1998).CrossRefGoogle Scholar
  24. 24.
    V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, and K. Trachenko, Phys. Rev. Lett. 111, 145901 (2013).CrossRefGoogle Scholar
  25. 25.
    R. E. Ryltsev and N. M. Chtchelkatchev, Phys. Rev. E 88, 052101 (2013).CrossRefGoogle Scholar
  26. 26.
    S. Torquato and Y. Jiao, Phys. Rev. E 87, 022111 (2013).CrossRefGoogle Scholar
  27. 27.
    Supercritical Fluids, Fundamentals and Applications, Ed. by E. Kiran, P. G. Debenedetti, and J. Peters, NATO Science Series, Ser. E: Applied Sciences, Vol. 366 (Kluwer, 2000).Google Scholar
  28. 28.
    C. A. Eckert, D. H. Ziger, K. P. Johnston, and S. J. Kim, J. Phys. Chem. 90, 2738 (1986).CrossRefGoogle Scholar
  29. 29.
    K. Nishikawa and T. Morita, Chem. Phys. Lett. 316, 238 (2000).CrossRefGoogle Scholar
  30. 30.
    T. Sato, M. Sigiuama, and K. Itoh, Phys. Rev. E 78, 051503 (2008).CrossRefGoogle Scholar
  31. 31.
    R. T. Kurnik and R. C. Reid, AIChE J. 27, 861 (1981).CrossRefGoogle Scholar
  32. 32.
    B. Otto, J. Schroeder, and J. Troe, J. Chem. Phys. 81, 202 (1984).CrossRefGoogle Scholar
  33. 33.
    G. M. Simmons and D. M. Mason, Chem. Eng. Sci. 27, 89 (1972).CrossRefGoogle Scholar
  34. 34.
    Y. Kimura and Y. J. Yoshimura, Chem. Phys. 96, 3824 (1992).Google Scholar
  35. 35.
    Y. Ikushima, N. Saito, and M. Arai, J. Phys. Chem. 96, 2293 (1992).CrossRefGoogle Scholar
  36. 36.
    D. Tuma and G. M. Schneider, Fluid Phase Equilib. 158–160, 743 (1999).CrossRefGoogle Scholar
  37. 37.
    K. Nishikawa, K. Kusano, A. A. Arai, and T. Morita, J. Chem. Phys. 118, 1341 (2003).CrossRefGoogle Scholar
  38. 38.
    V. Tanneur et al., Powder Technol. 187, 190 (2008).CrossRefGoogle Scholar
  39. 39.
    U. Haarhaus, P. Swidersky, and G. M. Schneider, J. Supercrit. Fluids 8, 100 (1995).CrossRefGoogle Scholar
  40. 40.
    P. Swidersky, D. Tuma, and G. M. Schneider, J. Supercrit. Fluids 9, 12 (1996).CrossRefGoogle Scholar
  41. 41.
    S. M. Howdle and V. N. Bagratashvili, Chem. Phys. Lett. 214, 215 (1993).CrossRefGoogle Scholar
  42. 42.
    V. V. Brazhkin and V. N. J. Ryzhov, Chem. Phys. 135, 084503 (2011).Google Scholar
  43. 43.
    V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and E. N. Tsiok, J. Phys. Chem. B 88, 3344 (2011).Google Scholar
  44. 44.
    H.-O. May and P. Mausbach, Phys. Rev. E 85, 031201 (2012).CrossRefGoogle Scholar
  45. 45.
    V. V. Brazhkin, private commun.Google Scholar
  46. 46.
    A. I. Chepurov et al., Tr. Ross. Akad. Nauk, Sib. Otd., No. 836 (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Brazhkin
    • 1
  • A. G. Lyapin
    • 1
  • V. N. Ryzhov
    • 1
  • K. Trachenko
    • 2
  • Yu. D. Fomin
    • 1
  • E. N. Tsiok
    • 1
  1. 1.Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk (Moscow)Russia
  2. 2.Queen Mary UniversityLondonUK

Personalised recommendations