Russian Journal of Physical Chemistry B

, Volume 7, Issue 8, pp 924–931 | Cite as

The effect of clustering of VO2+ ions in sub- and supercritical water. An in situ EPR study

  • S. N. Trukhan
  • V. F. Yudanov
  • O. N. Mart’yanov


Temperature variations of the EPR spectra of VO2+ ions in sub- and supercritical water under isothermal and temperature gradient conditions are investigated using an in situ EPR. Broadening of the hyperfine structure at increasing temperature and the appearance of an unresolved broad low-intensity line (ΔH pp ≈ 300 Oe) in the supercritical state are observed in the absence of temperature gradients, indicating an increase of exchange interaction between VO2+ ions in supercritical water. An exchange-narrowed anisotropic absorption line is observed under the temperature-gradient conditions in the subcritical water near the transition to a supercritical state. The shape of this line is close to that observed in the solid salt VOSO4 · 3H2O. It is shown that in situ EPR allows us to investigate the effects of changing the local environment of paramagnetic ions, which precedes the well-known process of clustering and formation of amorphous oxide particles in sub- and supercritical conditions.


ESR supercritical water in situ spectroscopy VO2+ VOSO4 clustering heterogeneous catalyst temperature gradient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. E. Savage, Chem. Rev. 99, 603 (1999).CrossRefGoogle Scholar
  2. 2.
    P. G. Jessop, T. Ikariya, and R. Noyori, Chem. Rev. 99, 475 (1999).CrossRefGoogle Scholar
  3. 3.
    P. E. Savage, Catal. Today 62, 167 (2000).CrossRefGoogle Scholar
  4. 4.
    A. Baiker, Chem. Rev. 99, 453 (1998).CrossRefGoogle Scholar
  5. 5.
    S. P. Gubin and E. Yu. Buslaeva, Sverkhkrit. Fluidy: Teor. Prakt. 4 (4), 73 (2009).Google Scholar
  6. 6.
    A. A. Galkin and V. V. Lunin, Russ. Chem. Rev. 74, 21 (2005).CrossRefGoogle Scholar
  7. 7.
    G. J. Hutchings, J. K. Bartley, J. M. Webster, J. A. Lopez-Sanchez, D. J. Gilbert, C. J. Kiely, A. F. Carley, S. M. Howdle, S. Sajip, S. Caldarelli, C. Rhodes, J. C. Volta, and M. Poliakoff, J. Catal. 197, 232 (2001).CrossRefGoogle Scholar
  8. 8.
    G. J. Hutchings, J. A. Lopez-Sanchez, J. K. Bartley, J. M. Webster, A. Burrows, C. J. Kiely, A. F. Carley, C. Rhodes, M. Havecker, A. Knop-Gericke, R. W. Mayer, R. Schlogl, J. C. Volta, and M. Poliakoff, J. Catal. 208, 197 (2002).CrossRefGoogle Scholar
  9. 9.
    V. V. Guliants, S. A. Holmes, J. B. Benziger, P. Heaney, D. Yates, and I. E. Wachs, J. Mol. Catal. A: Chem. 172, 265 (2001).CrossRefGoogle Scholar
  10. 10.
    Z.-R. Tang, J. K. Edwards, J. K. Bartley, S. H. Taylor, A. F. Carley, A. A. Herzing, C. J. Kiely, and G. J. Hutchings, J. Catal. 249, 208 (2007).CrossRefGoogle Scholar
  11. 11.
    P. J. Miedziak, Z. Tang, T. E. Davies, D. I. Enache, J. K. Bartley, A. F. Carley, A. A. Herzing, C. J. Kiely, S. H. Taylor, and G. J. Hutchings, J. Mater. Chem. 19, 8619 (2009).CrossRefGoogle Scholar
  12. 12.
    A. A. Galkin, B. G. Kostyuk, V. V. Lunin, and M. Poliakoff, Angew. Chem. Int. Ed. 39, 2738 (2000).CrossRefGoogle Scholar
  13. 13.
    A. Cabanas, J. A. Darr, E. Lester, and M. Poliakoff, Chem. Commun. 8, 901 (2000).CrossRefGoogle Scholar
  14. 14.
    Y. Hakuta, S. Onai, H. Terayama, T. Adschiri, and K. Arai, J. Mater. Sci. Lett. 17, 1211 (1998).CrossRefGoogle Scholar
  15. 15.
    A. A. Galkin, A. O. Turakulova, N. N. Kuznetsova, and V. V. Lunin, Vestn. Mosk. Univ., Ser. 2: Khim. 42, 305 (2001).Google Scholar
  16. 16.
    A. A. Galkin, B. G. Kostyuk, N. N. Kuznetsova, A. O. Turakulova, V. V. Lunin, and M. Polyakov, Kinet. Catal. 42, 154 (2001).CrossRefGoogle Scholar
  17. 17.
    E. T. Shimanskaya and A. Z. Golik, in Proceedings of the Workshop on Critical Phenomena and Fluctuations in Solutions, Moscow (Akad. Nauk SSSR, Moscow, 1960), p. 161.Google Scholar
  18. 18.
    A. A. Peterson, P. Vontobel, F. Vogel, and J. W. Tester, J. Supercrit. Fluids 43, 490 (2008).CrossRefGoogle Scholar
  19. 19.
    P. Kritzer and E. Dinjus, Chem. Eng. J. 83, 207 (2001).CrossRefGoogle Scholar
  20. 20.
    P. A. Rona, Science 299, 673 (2003).CrossRefGoogle Scholar
  21. 21.
    J.-D. Grunwaldt, R. Wandeler, and A. Baiker, Catal. Rev. 45, 1 (2003).CrossRefGoogle Scholar
  22. 22.
    J. L. DeGrazia, T. W. Randolph, and J. A. O’Brien, J. Phys. Chem. A 102, 1674 (1998).CrossRefGoogle Scholar
  23. 23.
    T. Tachikawa, K. Akiyama, C. Yokoyama, and S. Tero-Kubota, Chem. Phys. Lett. 376, 350 (2003).CrossRefGoogle Scholar
  24. 24.
    T. W. Randolph and C. Carlier, J. Phys. Chem. 96, 5146 (1992).CrossRefGoogle Scholar
  25. 25.
    S. N. Batchelor, J. Phys. Chem. B 102, 615 (1998).CrossRefGoogle Scholar
  26. 26.
    K. Kobiro, M. Matsura, H. Kojima, and K. Nakahara, Tetrahedron 65, 807 (2009).CrossRefGoogle Scholar
  27. 27.
    S. N. Trukhan, V. F. Yudanov, and O. N. Martyanov, J. Supercrit. Fluids 57, 247 (2011).CrossRefGoogle Scholar
  28. 28.
    K. I. Zamaraev and A. T. Nikitaev, in Free-Radical States in Chemistry, International Collection in Memory of Acad. V. V. Voevodskii, Ed. by L. A. Blumenfeld and Yu. N. Molin (Nauka, Novosibirsk, 1972), p. 102 [in Russian].Google Scholar
  29. 29.
    P. S. Hubbard, Phys. Rev. 131, 1155 (1963).CrossRefGoogle Scholar
  30. 30.
    K. I. Zamaraev, Yu. P. Molin, and K. M. Salikhov, Spin Exchange (Nauka, Novosibirsk, 1977) [in Russian].Google Scholar
  31. 31.
    M. Hodes, P. A. Marrone, G. T. Hong, K. A. Smith, and J. W. Tester, J. Supercrit. Fluids 29, 265 (2004).CrossRefGoogle Scholar
  32. 32.
    M. Schubert, J. W. Regler, and F. Vogel, J. Supercrit. Fluids 52, 99 (2010).CrossRefGoogle Scholar
  33. 33.
    W. Song, R. Biswas, and M. Maroncelli, J. Phys. Chem. A 104, 6924 (2000).CrossRefGoogle Scholar
  34. 34.
    R. N. Rogers and G. E. Pake, J. Chem. Phys. 33, 1107 (1960).CrossRefGoogle Scholar
  35. 35.
    K. M. Eriksen, D. A. Karydis, S. Boghosian, and R. Fehrmann, J. Catal. 155, 32 (1995).CrossRefGoogle Scholar
  36. 36.
    S. L. Wallen, B. J. Palmer, and J. L. Fulton, J. Chem. Phys. 108, 4039 (1998).CrossRefGoogle Scholar
  37. 37.
    Y. Ikushima, N. Saito, and M. Arai, J. Phys. Chem. B 102, 3029 (1998).CrossRefGoogle Scholar
  38. 38.
    T. Tassaing, Y. Danten, and M. Besnard, J. Mol. Liquids 101, 149 (2002).CrossRefGoogle Scholar
  39. 39.
    S. C. Tucker and M. W. Maddox, J. Phys. Chem. B 102, 2437 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. N. Trukhan
    • 1
  • V. F. Yudanov
    • 1
  • O. N. Mart’yanov
    • 1
  1. 1.Boreskov Institute of CatalysisRussian Academy of Sciences, Siberian BranchNovosibirskRussia

Personalised recommendations