Russian Journal of Physical Chemistry B

, Volume 5, Issue 5, pp 748–764 | Cite as

A model of single-electron transport. Calculation of the thermodynamic parameters for electron capture by the bound proton of oxyacids

  • A. S. Zubkov
  • V. I. Artyukhov
  • L. A. Chernozatonskii
  • O. S. Nedelina
Elementary Physicochemical Processes
  • 36 Downloads

Abstract

Electron transfer is an elementary chemical event involved in many biochemical reactions. Experiments have shown that some oxyacids participating in electron transport are capable of dissociative capture of low-energy electrons, a process indicative of the formation of a metastable anion. The present work reports the results of quantum-chemical simulations of the dissociative electron attachment to a number of oxyacids (H3PO4, H2SO 4 , HPO 4 2− , H2SO4, HSO 4 , B(OH) 4 , HCOOH) with formation of a hydrogen atom in vacuum and in the aqueous medium. Phosphate is one of the most important building units of biological molecules, whereas formic acid can serve as a model of the −COOH group in amino acids, carboxylic acids, functional sites of enzymes, etc. The electron affinity of these oxyacids in the aquatic environment is positive and exceeds the energy of hydrogen atom abstraction. The proton of the OH group captures the electron, while the aquatic environment stabilizes it in the trapped state due to its polarizability. The data obtained provide a fresh look at the phenomenon of proton-assisted electron transfer and at the use of oxyacid buffers.

Keywords

dissociative electron capture electron transport oxyacid quantum chemistry modeling bound proton hydrogen atom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. S. Nedelina, O. N. Brzhevskaya, and E. N. Degtyarev, Dokl. Chem. 428, 233 (2009).CrossRefGoogle Scholar
  2. 2.
    O. S. Nedelina, O. N. Brzhevskaya, E. N. Degtyarev, and A. S. Zubkov, Oxid. Commun. 31, 786 (2008).Google Scholar
  3. 3.
    O. N. Brzhevskaya, E. N. Degtyarev, A. S. Zhuravleva, et al., Dokl. Biochem. Biophys. 420, 119 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Aflatooni, B. Hitt, G. A. Gallup, and P. D. Burrow, J. Chem. Phys. 115, 6489 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Allan, J. Phys. B: At. Mol. Opt. Phys. 39, 2939 (2006).CrossRefGoogle Scholar
  6. 6.
    G. A. Gallup, P. D. Burrow, and I. I. Fabrikant, Phys. Rev. A 79, 042701 (2009).CrossRefGoogle Scholar
  7. 7.
    I. Martin, T. Skalicky, J. Langer, et al., Phys. Chem. Chem. Phys. 7, 2212 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Pelc, W. Sailer, P. Scheier, N. J. Mason, and T. D. Märk, Eur. Phys. J. D 20, 441 (2002).CrossRefGoogle Scholar
  9. 9.
    A. Pelc, W. Sailer, P. Scheier, et al., Chem. Phys. Lett. 361, 277 (2002).CrossRefGoogle Scholar
  10. 10.
    A. Pelc, W. Sailer, P. Scheier, et al., Vacuum 70, 429 (2003).CrossRefGoogle Scholar
  11. 11.
    V. S. Prabhudesai, D. Nandi, A. H. Kelkar, R. Parajuli, and E. Krishnakumar, Chem. Phys. Lett. 405, 172 (2005).CrossRefGoogle Scholar
  12. 12.
    T. N. Rescigno, C. S. Trevisan, and A. E. Orel, Phys. Rev. Lett. 96, 213201 (2006).CrossRefGoogle Scholar
  13. 13.
    A. M. Scheer, P. Mozejko, G. A. Gallup, and P. Burrow, J. Chem. Phys. 126, 174301 (2007).CrossRefGoogle Scholar
  14. 14.
    X.-B. Wang, E. R. Vorpagel, X. Yang, and L.-S. Wang, J. Phys. Chem. A 105, 10468 (2001).CrossRefGoogle Scholar
  15. 15.
    V. Marinović and A. R. Despić, Electrochim. Acta 44, 4073 (1999).CrossRefGoogle Scholar
  16. 16.
    M. Smiechowski, E. Gojlo, and J. Stangret, J. Phys. Chem. B 113, 7650 (2009).CrossRefGoogle Scholar
  17. 17.
    M. A. Kurinovich and J. K. Lee, J. Am. Chem. Soc. 122, 6258 (2000).CrossRefGoogle Scholar
  18. 18.
    J. Gu, Y. Xie, and H. F. Schaefer, J. Am. Chem. Soc. 128, 1250 (2006).CrossRefGoogle Scholar
  19. 19.
    X. Sun and J. K. Lee, J. Org. Chem. 72, 6548 (2007).CrossRefGoogle Scholar
  20. 20.
    E. V. Stefanovich, A. I. Boldyrev, T. N. Truong, and J. Simons, J. Phys. Chem. B 102, 4205 (1998).CrossRefGoogle Scholar
  21. 21.
    M. A. Huels, L. Parenteau, and L. Sanche, J. Chem. Phys. 100, 3940 (1993).CrossRefGoogle Scholar
  22. 22.
    J. Simons, J. Phys. Chem. A 112, 6401 (2008).CrossRefGoogle Scholar
  23. 23.
    M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).CrossRefGoogle Scholar
  24. 24.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  25. 25.
    T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  26. 26.
    M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. 255, 327 (1996).CrossRefGoogle Scholar
  27. 27.
    A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar
  28. 28.
    M. D. Liptak and G. C. Shields, J. Am. Chem. Soc. 123, 7314 (2001).CrossRefGoogle Scholar
  29. 29.
    W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comp. Phys. Rep. 1, 57 (1984).CrossRefGoogle Scholar
  30. 30.
    R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).CrossRefGoogle Scholar
  31. 31.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.01 (Gaussian, Inc., Wallingford CT, 2004).Google Scholar
  32. 32.
    K. Aflatooni, A. M. Scheer, and P. D. Burrow, J. Chem. Phys. 125, 054301 (2006).CrossRefGoogle Scholar
  33. 33.
    P. D. Burrow, G. A. Gallup, and A. Modelli, J. Phys. Chem. A 112, 4106 (2008).CrossRefGoogle Scholar
  34. 34.
    J. Berdys, I. Anusiewicz, P. Skurski, and J. Simons, J. Am. Chem. Soc. 126, 6441 (2004).CrossRefGoogle Scholar
  35. 35.
    X. Li, M. D. Sevilla, and L. Sanche, J. Am. Chem. Soc. 125, 13668 (2003).CrossRefGoogle Scholar
  36. 36.
    X. Pan and L. Sanche, Phys. Rev. Lett. 94, 198104 (2005).CrossRefGoogle Scholar
  37. 37.
    S. Tonzani and C. H. Greene, J. Chem. Phys. 125, 094504 (2006).CrossRefGoogle Scholar
  38. 38.
    A. A. Zakharenko, S. Karthikyan, and K. S. Kim, Cornell University Library, http://arxiv.org/pdf/0802.0625v1 (2008).
  39. 39.
    S. Tonzani and C. H. Greene, J. Chem. Phys. 124, 054312 (2006).CrossRefGoogle Scholar
  40. 40.
    B. R. Bickmore, K. M. Rosso, C. J. Tadanier, E. J. Bylaska, and D. Doud, Geochim. Cosmochim. Acta 70, 4057 (2006).CrossRefGoogle Scholar
  41. 41.
    W. G. Mallard and P. J. Linstrom, NIST Standard Reference Database (National Institute of Standards and Technology, Gaithersburg, 1998).Google Scholar
  42. 42.
    E. Illenberger and J. Momigny, Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization (Springer, Steinkopff, Darmstadt, New York, 1992).Google Scholar
  43. 43.
    K. Gupta, D. R. Roy, V. Subramanian, and P. K. Chattaraj, J. Mol. Struct. (Theochem) 812, 13 (2007).CrossRefGoogle Scholar
  44. 44.
    V. Marinovic’ and A. R. Despic’, J. Electroanal. Chem. 431, 127 (1997).CrossRefGoogle Scholar
  45. 45.
    V. Marinović and A. R. Despić, Russ. J. Electrochem. 33, 965 (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. S. Zubkov
    • 1
  • V. I. Artyukhov
    • 1
    • 2
  • L. A. Chernozatonskii
    • 1
  • O. S. Nedelina
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA

Personalised recommendations