Skip to main content
Log in

A model of single-electron transport. Calculation of the thermodynamic parameters for electron capture by the bound proton of oxyacids

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Electron transfer is an elementary chemical event involved in many biochemical reactions. Experiments have shown that some oxyacids participating in electron transport are capable of dissociative capture of low-energy electrons, a process indicative of the formation of a metastable anion. The present work reports the results of quantum-chemical simulations of the dissociative electron attachment to a number of oxyacids (H3PO4, H2SO 4 , HPO 2−4 , H2SO4, HSO 4 , B(OH) 4 , HCOOH) with formation of a hydrogen atom in vacuum and in the aqueous medium. Phosphate is one of the most important building units of biological molecules, whereas formic acid can serve as a model of the −COOH group in amino acids, carboxylic acids, functional sites of enzymes, etc. The electron affinity of these oxyacids in the aquatic environment is positive and exceeds the energy of hydrogen atom abstraction. The proton of the OH group captures the electron, while the aquatic environment stabilizes it in the trapped state due to its polarizability. The data obtained provide a fresh look at the phenomenon of proton-assisted electron transfer and at the use of oxyacid buffers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. S. Nedelina, O. N. Brzhevskaya, and E. N. Degtyarev, Dokl. Chem. 428, 233 (2009).

    Article  CAS  Google Scholar 

  2. O. S. Nedelina, O. N. Brzhevskaya, E. N. Degtyarev, and A. S. Zubkov, Oxid. Commun. 31, 786 (2008).

    CAS  Google Scholar 

  3. O. N. Brzhevskaya, E. N. Degtyarev, A. S. Zhuravleva, et al., Dokl. Biochem. Biophys. 420, 119 (2008).

    Article  CAS  Google Scholar 

  4. K. Aflatooni, B. Hitt, G. A. Gallup, and P. D. Burrow, J. Chem. Phys. 115, 6489 (2001).

    Article  CAS  Google Scholar 

  5. M. Allan, J. Phys. B: At. Mol. Opt. Phys. 39, 2939 (2006).

    Article  CAS  Google Scholar 

  6. G. A. Gallup, P. D. Burrow, and I. I. Fabrikant, Phys. Rev. A 79, 042701 (2009).

    Article  Google Scholar 

  7. I. Martin, T. Skalicky, J. Langer, et al., Phys. Chem. Chem. Phys. 7, 2212 (2005).

    Article  CAS  Google Scholar 

  8. A. Pelc, W. Sailer, P. Scheier, N. J. Mason, and T. D. Märk, Eur. Phys. J. D 20, 441 (2002).

    Article  CAS  Google Scholar 

  9. A. Pelc, W. Sailer, P. Scheier, et al., Chem. Phys. Lett. 361, 277 (2002).

    Article  CAS  Google Scholar 

  10. A. Pelc, W. Sailer, P. Scheier, et al., Vacuum 70, 429 (2003).

    Article  CAS  Google Scholar 

  11. V. S. Prabhudesai, D. Nandi, A. H. Kelkar, R. Parajuli, and E. Krishnakumar, Chem. Phys. Lett. 405, 172 (2005).

    Article  CAS  Google Scholar 

  12. T. N. Rescigno, C. S. Trevisan, and A. E. Orel, Phys. Rev. Lett. 96, 213201 (2006).

    Article  CAS  Google Scholar 

  13. A. M. Scheer, P. Mozejko, G. A. Gallup, and P. Burrow, J. Chem. Phys. 126, 174301 (2007).

    Article  CAS  Google Scholar 

  14. X.-B. Wang, E. R. Vorpagel, X. Yang, and L.-S. Wang, J. Phys. Chem. A 105, 10468 (2001).

    Article  CAS  Google Scholar 

  15. V. Marinović and A. R. Despić, Electrochim. Acta 44, 4073 (1999).

    Article  Google Scholar 

  16. M. Smiechowski, E. Gojlo, and J. Stangret, J. Phys. Chem. B 113, 7650 (2009).

    Article  CAS  Google Scholar 

  17. M. A. Kurinovich and J. K. Lee, J. Am. Chem. Soc. 122, 6258 (2000).

    Article  CAS  Google Scholar 

  18. J. Gu, Y. Xie, and H. F. Schaefer, J. Am. Chem. Soc. 128, 1250 (2006).

    Article  CAS  Google Scholar 

  19. X. Sun and J. K. Lee, J. Org. Chem. 72, 6548 (2007).

    Article  CAS  Google Scholar 

  20. E. V. Stefanovich, A. I. Boldyrev, T. N. Truong, and J. Simons, J. Phys. Chem. B 102, 4205 (1998).

    Article  CAS  Google Scholar 

  21. M. A. Huels, L. Parenteau, and L. Sanche, J. Chem. Phys. 100, 3940 (1993).

    Article  Google Scholar 

  22. J. Simons, J. Phys. Chem. A 112, 6401 (2008).

    Article  CAS  Google Scholar 

  23. M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

    Article  CAS  Google Scholar 

  24. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  25. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  26. M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. 255, 327 (1996).

    Article  CAS  Google Scholar 

  27. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Article  CAS  Google Scholar 

  28. M. D. Liptak and G. C. Shields, J. Am. Chem. Soc. 123, 7314 (2001).

    Article  CAS  Google Scholar 

  29. W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comp. Phys. Rep. 1, 57 (1984).

    Article  Google Scholar 

  30. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

    Article  CAS  Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.01 (Gaussian, Inc., Wallingford CT, 2004).

    Google Scholar 

  32. K. Aflatooni, A. M. Scheer, and P. D. Burrow, J. Chem. Phys. 125, 054301 (2006).

    Article  CAS  Google Scholar 

  33. P. D. Burrow, G. A. Gallup, and A. Modelli, J. Phys. Chem. A 112, 4106 (2008).

    Article  CAS  Google Scholar 

  34. J. Berdys, I. Anusiewicz, P. Skurski, and J. Simons, J. Am. Chem. Soc. 126, 6441 (2004).

    Article  CAS  Google Scholar 

  35. X. Li, M. D. Sevilla, and L. Sanche, J. Am. Chem. Soc. 125, 13668 (2003).

    Article  CAS  Google Scholar 

  36. X. Pan and L. Sanche, Phys. Rev. Lett. 94, 198104 (2005).

    Article  CAS  Google Scholar 

  37. S. Tonzani and C. H. Greene, J. Chem. Phys. 125, 094504 (2006).

    Article  Google Scholar 

  38. A. A. Zakharenko, S. Karthikyan, and K. S. Kim, Cornell University Library, http://arxiv.org/pdf/0802.0625v1 (2008).

  39. S. Tonzani and C. H. Greene, J. Chem. Phys. 124, 054312 (2006).

    Article  Google Scholar 

  40. B. R. Bickmore, K. M. Rosso, C. J. Tadanier, E. J. Bylaska, and D. Doud, Geochim. Cosmochim. Acta 70, 4057 (2006).

    Article  CAS  Google Scholar 

  41. W. G. Mallard and P. J. Linstrom, NIST Standard Reference Database (National Institute of Standards and Technology, Gaithersburg, 1998).

    Google Scholar 

  42. E. Illenberger and J. Momigny, Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization (Springer, Steinkopff, Darmstadt, New York, 1992).

    Google Scholar 

  43. K. Gupta, D. R. Roy, V. Subramanian, and P. K. Chattaraj, J. Mol. Struct. (Theochem) 812, 13 (2007).

    Article  CAS  Google Scholar 

  44. V. Marinovic’ and A. R. Despic’, J. Electroanal. Chem. 431, 127 (1997).

    Article  Google Scholar 

  45. V. Marinović and A. R. Despić, Russ. J. Electrochem. 33, 965 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zubkov.

Additional information

Original Russian Text © A.S. Zubkov, V.I. Artyukhov, L.A. Chernozatonskii, O.S. Nedelina, 2011, published in Khimicheskaya Fizika, 2011, Vol. 30, No. 10, pp. 23–40.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubkov, A.S., Artyukhov, V.I., Chernozatonskii, L.A. et al. A model of single-electron transport. Calculation of the thermodynamic parameters for electron capture by the bound proton of oxyacids. Russ. J. Phys. Chem. B 5, 748–764 (2011). https://doi.org/10.1134/S1990793111090259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793111090259

Keywords

Navigation