Russian Journal of Physical Chemistry B

, Volume 5, Issue 7, pp 1106–1115 | Cite as

Hydrophobic properties of carbon fabric with Teflon AF 2400 fluoropolymer coating deposited from solutions in supercritical carbon dioxide

  • D. O. Kolomytkin
  • M. O. Gallyamov
  • A. R. Khokhlov


A method for uniform deposition of a hydrophobizing polymer from a solution in supercritical carbon dioxide (SC-CO2) onto the surface of carbon fabric used for manufacturing gas diffusion layers of fuel cells is developed. This approach, based on using Teflon AF 2400, a SC-CO2-soluble copolymer, is compared to the traditional method for hydrophobization of the gas diffusion layer of a fuel cell, based on the use of an aqueous dispersion of Teflon 30N. Hydrophobizing polymers were deposited on the surface of a highly rough carbon fabric (Saati), an electrically conductive gas diffusion layer material with good mechanical and resource characteristics. In one of the versions of the method of deposition from SC-CO2, the hydrophobic film was subjected to additional annealing at a temperature above the glass transition temperature of Teflon AF 2400 amorphous copolymer. It is shown that this approach makes it possible to form a uniform thin fluoropolymer film on carbon fibers, which imparts the most stable superhydrophobic properties to the surface of the gas diffusion layer at very low amounts of deposited polymer. In this case, the contact angle reaches a value much greater than that previously reported in the literature for similar methods. Prolonged immersion in water (for 1000 h) or wash in the presence of detergent does not impair the superhydrophobicity of the gas diffusion layer. The developed gas-diffusion layer was used to prepare an electrode for phosphoric fuel cell, the current-voltage characteristic of which indicates a satisfactory performance. The results obtained show that adopted approach is promising for developing gas diffusion layers for fuel cell electrodes.


supercritical carbon dioxide superhydrophobicity thin films hydrophobic polymer coatings gas diffusion layers fuel cell electrodes hydrophobized carbon tissue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Schulze, N. Wagner, T. Kaz, and K. A. Friedrich, Electrochim. Acta 52, 2328 (2007).CrossRefGoogle Scholar
  2. 2.
    M. O. Gallyamov, L. N. Nikitin, A. Yu. Nikolaev, A.N. Obraztsov, V. M. Buznik, and A. R. Khokhlov, Colloid. J. 69, 411 (2007).CrossRefGoogle Scholar
  3. 3.
    E. Giilzow, M. Schulze, N. Wagner, T. Kaz, R. Reissner, G. Steinhilber, and A. J. Schneider, Power Sources 86, 352 (2000).CrossRefGoogle Scholar
  4. 4.
    M. Schulze, A. Schneider, and E. J. Gulzow, Power Sources 127, 213 (2004).CrossRefGoogle Scholar
  5. 5.
    Fuel Cell Technology Handbook, Ed. by G. Hoogers (CRC Press, Boca Raton, 2003).Google Scholar
  6. 6.
    K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (Wiley, New York, 1988).Google Scholar
  7. 7.
    R. Sedev, M. Fabretto, and J. Ralston, J. Adhesion 80, 497 (2004).CrossRefGoogle Scholar
  8. 8.
    L. B. Boinovich, A. M. Emel’yanenko, A. M. Muzafarov, A. M. Myshkovskii, A. S. Pashinin, A. Yu. Tsivadze, and D. I. Yarova, Ros. Nanotekhnol. 3(9–10), 100 (2008).Google Scholar
  9. 9.
    C. Quan, O. Werner, L. Wagberg, and C. J. Turner, Supercrit. Fluids 49, 117 (2009).CrossRefGoogle Scholar
  10. 10.
    O. Werner, C. Quan, C. Turner, B. Pettersson, and L. Wagberg, Cellulose 17, 187 (2010).CrossRefGoogle Scholar
  11. 11.
    I. Pinnau and L. G. Toy, J. Membr. Sci. 109, 125 (1996).CrossRefGoogle Scholar
  12. 12.
    J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, Proc. SPIE-Int. Soc. Opt. Eng. 1330, 142 (1990).Google Scholar
  13. 13.
    R. Altkorn, I. Koev, and M. J. Pelletier, Appl. Spectrosc. 53, 1169 (1999).CrossRefGoogle Scholar
  14. 14.
    S. W. Lee and W. M. Sigmund, Colloid Surf. A: Physicochem. Eng. Asp. 204, 43 (2002).CrossRefGoogle Scholar
  15. 15.
    F. Rupp, D. Axmann, C. Ziegler, and J. Geis-Gerstorger, J. Biomed. Mater. Res. 62, 567 (2002).CrossRefGoogle Scholar
  16. 16.
    R. Manor, A. Datta, I. Ahmad, M. Hotlz, S. Gango- padhyay, and T. Dallas, IEEE Sens. J. 3, 687 (2003).CrossRefGoogle Scholar
  17. 17.
    H. Zhao, K. Ismail, and S. G. Weber, J. Am. Chem. Soc. 126, 13184 (2004).CrossRefGoogle Scholar
  18. 18.
    A. Drechsler, N. Petong, J. Zhang, D. Y. Kwok, and K. Grundke, Colloid Surf. A: Physicochem. Eng. Asp. 250, 357 (2004).CrossRefGoogle Scholar
  19. 19.
    RF Patent No. 2332 429 (2008).Google Scholar
  20. 20.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).Google Scholar
  21. 21.
    L. N. Nikitin, M. O. Gallyamov, E. E. Said-Galiev, A. O. Khokhlov, and V. M. Buznik, Ros. Khim. Zh. 52(3), 56 (2008).Google Scholar
  22. 22.
    F. Rindfleisch, T. A. DiNoia, and M. A. McHugh, J. Phys. Chem. 100, 15581 (1996).CrossRefGoogle Scholar
  23. 23.
    M. O. Gallyamov, R. A. Vinokur, L. N. Nikitin, E. E. Said-Galiyev, A. R. Khokhlov, I. V. Yaminsky, and K. Schaumburg, Langmuir 18, 6928 (2002).CrossRefGoogle Scholar
  24. 24.
    M. O. Gallyamov, V. M. Buznik, A. K. Tsvetnikov, R. A. Vinokur, L. N. Nikitin, E. E. Said-Galiyev, A. R. Khokhlov, and K. Schaumburg, Khim. Fiz. 23, 76 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • D. O. Kolomytkin
    • 1
  • M. O. Gallyamov
    • 1
  • A. R. Khokhlov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations