Russian Journal of Physical Chemistry B

, Volume 5, Issue 3, pp 393–401 | Cite as

Simulation of seismo-ionospheric effects initiated by internal gravity waves

  • M. V. Klimenko
  • V. V. Klimenko
  • I. V. Karpov
  • I. E. Zakharenkova
Chemical Physics of Atmosphere and Ionosphere

Abstract

Experimental studies have repeatedly demonstrated that, a few days before a strong earthquake, local increases (sometimes decreases) in the electron density in the ionosphere over the epicentral area emerge. Simulations with the help of the GSM TIP (global self-consistent model “Thermosphere-Ionosphere-Protonosphere”) and UAM (Upper Atmosphere Model) models show that account of local disturbances of the zonal electric fields makes it possible to reproduce the morphology of ionospheric disturbances. However, these model experiments do not explain the formation of such ionospheric features over the epicentral area of the impending earthquake. In this paper, we propose a mechanism for the formation of ionospheric disturbances before strong earthquakes due to propagation and dissipation of small-scale internal gravity waves (IGWs) in the upper atmosphere. Using the GSM TIP model, we calculated the ionospheric parameters with account of small-scale IGWs in the near-epicenter area. It is shown that disturbances in the TEC (total electron content) predicted by calculations are in satisfactory agreement with observations from GPS (Global Position System) satellites before the strong mid-latitude earthquake in Greece on January 8, 2006.

Keywords

ionosphere seismo-ionospheric effects internal gravity waves total electron content numerical simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Liperovskii, O. A. Pokhotelov, and S. L. Shalimov, Ionospheric Precursors of Earthquakes (Nauka, Moscow, 1992) [in Russian].Google Scholar
  2. 2.
    S. A. Pulinets and K. Boyarchuk, Ionospheric Precursors of Earthquakes (Springer, Berlin, 2004).Google Scholar
  3. 3.
    M. Hayakawa, Sensors 7, 1141 (2007).CrossRefGoogle Scholar
  4. 4.
    L. P. Korsunova and V. V. Khegai, Geomagn. Aeron. 45, 706 (2005) [Geomagn. Aeron. 45, 665 (2005)].Google Scholar
  5. 5.
    J. Y. Liu, Y. I. Chen, Y. J. Chuo, and C. S. Chen, J. Geophys. Res. 111(A05304) (2006).Google Scholar
  6. 6.
    J. Y. Liu, Y. J. Chuo, S. J. Shan, et al., Ann. Geophys. 22, 1585 (2004).CrossRefGoogle Scholar
  7. 7.
    S. Saroso, J. Y. Liu, K. Hattori, and C. H. Chen, Terr. Atmos. Oceanic 19, 481 (2008).CrossRefGoogle Scholar
  8. 8.
    I. E. Zakharenkova, I. I. Shagimuratov, A. Krankowski, and A. F. Lagovsky, Studia Geophys. Geodes. 51, 267 (2007).CrossRefGoogle Scholar
  9. 9.
    S. A. Pulinets, A. D. Legen’ka, T. V. Gaivoronskaya, and V. Kh. Depuev, J. Atmos. Sol.-Terr. Phys. 65, 1337 (2003).CrossRefGoogle Scholar
  10. 10.
    I. E. Zakharenkova, Candidate’s Dissertation in Mathematics and Physics (RGU Kanta, Kaliningrad, 2007).Google Scholar
  11. 11.
    I. E. Zakharenkova, I. I. Shagimuratov, and A. Krankowski, Acta Geophys. 55, 524 (2007).CrossRefGoogle Scholar
  12. 12.
    M. B. Gokhberg and S. L. Shalimov, Influence of Earthquakes and Explosions on the Ionosphere (Inst. of Phys. of the Earth RAS, Moscow, 2004).Google Scholar
  13. 13.
    V. A. Liperovskii, O. A. Pokhotelov, K. V. Meister, and E. V. Liperovskaya, Geomagn. Aeron. 48, 831 (2008) [Geomagn. Aeron. 48, 795 (2008)].Google Scholar
  14. 14.
    N. N. Pertsev and S. L. Shalimov, Geomagn. Aeron. 36(2), 111 (1996) [Geomagn. Aeron. 36, 223 (1996)].Google Scholar
  15. 15.
    E. A. Mareev, D. I. Iudin, and O. A. Molchanov, Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling (Terra Sci., Tokyo, 2002), p. 335.Google Scholar
  16. 16.
    O. A. Molchanov, Phys. Chem. Earth 29, 559 (2004).Google Scholar
  17. 17.
    V. M. Chmyrev, N. V. Isaev, S. V. Bilichenko, and G. A. Stanev, Phys. Earth Planet. Int. 57, 110 (1989).CrossRefGoogle Scholar
  18. 18.
    V. M. Sorokin and V. M. Chmyrev, Geomagn. Aeron. 42, 821 (2002) [Geomagn. Aeron. 42, 784 (2002)].Google Scholar
  19. 19.
    V. V. Grimalsky, M. Hayakawa, V. N. Ivchenko, Y. G. Rapoport, and V. I. Zadorozhnii, J. Atmos. Sol.-Terr. Phys. 65, 391 (2003).CrossRefGoogle Scholar
  20. 20.
    V. V. Denisenko, M. Y. Boudjada, M. Horn, et al., Nat. Haz. Earth Syst. Sci. 8, 1009 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Hayakawa and Y. Fujinawa, Electromagnetic Phenomena Related to Earthquake Prediction (Terra Sci., Tokyo, 1994).Google Scholar
  22. 22.
    A. A. Namgaladze, in Proc. Intern. Scientific Technical Conference on Science and Education 2007 (Murm. Gos. Tech. Univ., Murmansk, 2007), p. 358.Google Scholar
  23. 23.
    S. A. Pulinets, A. D. Legen’ka, T. V. Gaivoronskaya, and V. Kh. Depuev, J. Atmos. Sol.-Terr. Phys. 65, 1337 (2003).CrossRefGoogle Scholar
  24. 24.
    A. Kh. Depueva and Yu. Ya. Ruzhin, Adv. Space Res. 15(12), 151 (1995).CrossRefGoogle Scholar
  25. 25.
    S. A. Pulinets and A. D. Legen’ka, Geomagn. Aeron. 42, 239 (2002) [Geomagn. Aeron. 42, 227 (2002)].Google Scholar
  26. 26.
    I. E. Zakharenkova, A. Krankowski, and I. I. Shagimuratov, Nat. Haz. Earth System Sci. 6, 817 (2006).CrossRefGoogle Scholar
  27. 27.
    A. A. Namgaladze, M. V. Klimenko, V. V. Klimenko, and I. E. Zakharenkova, Geomagn. Aeron. 49, 267 (2009) [Geomagn. Aeron. 49, 252 (2009)].CrossRefGoogle Scholar
  28. 28.
    T. Yokoyama, T. Horinouchi, M. Yamamoto, and S. Fukao, J. Geophys. Res. 109(A12307) (2004).Google Scholar
  29. 29.
    I. V. Karpov and F. S. Bessarab, Geomagn. Aeron. 48, 217 (2008) [Geomagn. Aeron. 48, 209 (2008)].CrossRefGoogle Scholar
  30. 30.
    A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geoph. 127, 219 (1988).CrossRefGoogle Scholar
  31. 31.
    A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).Google Scholar
  32. 32.
    V. V. Klimenko, M. V. Klimenko, and V. V. Bryukhanov, Mat. Model. 18(3), 77 (2006).Google Scholar
  33. 33.
    M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 485 (2006) [Geomagn. Aeron. 46, 457 (2006)].CrossRefGoogle Scholar
  34. 34.
    B. E. Brunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].Google Scholar
  35. 35.
    G. Occhipinti, E. A. Kherani, and P. Lognonné, Geophys. J. Int. 173, 753 (2008).CrossRefGoogle Scholar
  36. 36.
    G. Occhipinti, P. Lognonné, E. A. Kherani, and H. Hébert, Geophys. Rev. Lett. 33, L20104 (2006).CrossRefGoogle Scholar
  37. 37.
    E. A. Kherani, P. Lognonné, N. Kamath, F. Crespon, and R. Garcia, Geophys. J. Int. 176, 1 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. V. Klimenko
    • 1
    • 2
  • V. V. Klimenko
    • 1
  • I. V. Karpov
    • 1
  • I. E. Zakharenkova
    • 1
  1. 1.West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Waves PropagationRussian Academy of SciencesKaliningradRussia
  2. 2.Kaliningrad State Technical UniversityKaliningradRussia

Personalised recommendations