Russian Journal of Physical Chemistry B

, Volume 4, Issue 7, pp 1047–1050 | Cite as

Production of new haemostatic materials by deposition of dispersed proteins onto porous matrices using supercritical carbon dioxide

  • D. Yu. Zalepugin
  • N. A. Tilkunova
  • E. V. Fronchek
  • M. O. Gallyamov
  • I. V. Chernyshova
  • V. S. Mishin
  • Yu. S. Yashin
  • T. E. Grigoryev
  • A. I. Gamzazade
  • A. R. Khokhlov
Article

Abstract

The main features of microparticle formation from protein substances (trypsin, lysozyme) using supercritical fluids (SAA method) are studied. Optical and scanning electron microscopies are employed to examine the morphology of the particles. The size distribution of the particles is studied using a cascade impactor. A method of deposition of particles onto Collachit-G haemostatic material is developed.

Keywords

micronization proteins lysozyme trypsin supercritical solvents carbon dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Yu. Zalepugin, N. A. Til’kunova, and I. V. Chernyshova, Superkrit. Flyuidy Teor. Prakt. 3(1), 5 (2008).Google Scholar
  2. 2.
    A. V. Ulesov, in Proc. Intern. Sci.-Pract. Conf. on Supercritical Fluid Technologies: Innovative Capacity of Russia, Rostov-on-Don, 29 June–1 July, 2004, p. 109.Google Scholar
  3. 3.
    B. Warwick, F. Dehghani, N. R. Foster, J. R. Biffin, and J. L. Regtop, in Proc. 5th Intern. Symp. on Supercritical Fluids, Atlanta, Georgia, USA, Apr. 8–12, 2000.Google Scholar
  4. 4.
    E. Badens, C. Magnan, and G. Charbit, Biotechnol. Bioeng. 72, 194 (2001).CrossRefGoogle Scholar
  5. 5.
    E. Reverchon, I. De Marco, and G. Della Porta, Int. J. Pharm. 234, 83 (2002).CrossRefGoogle Scholar
  6. 6.
    M. S. Costa, A. R. Duarte, M. M. Cardoso, and C. M. Duarte, Int. J. Pharm. 328, 72 (2007).CrossRefGoogle Scholar
  7. 7.
    S. Paper, F. Marciacq, H. Lochard, M. Sauceau, C. Joussot-Dubien, B. Freiss, and S. Sarrade, in Proc. 5th Intern. Symp. on Supercritical Fluids, Atlanta, Georgia, USA, Apr. 8–12, 2000.Google Scholar
  8. 8.
    S. P. Velaga, R. Ghaderi, and J. Carlfors, Int. J. Pharm. 231, 155 (2002).CrossRefGoogle Scholar
  9. 9.
    R. Ghaderi, P. Artursson, and J. Carlfors, Eur. J. Pharm. Sci. 10(1), 1 (2000).CrossRefGoogle Scholar
  10. 10.
    D. J. Gilbert, S. Palacodaty, R. Sloan, and P. York, in Proc. 5th Intern. Symp. on Supercritical Fluids, Atlanta, Georgia, USA, Apr. 8–12, 2000.Google Scholar
  11. 11.
    A. Engwicht, U. Girreser, and B. W. Muller, Biomaterials 21, 1587 (2000).CrossRefGoogle Scholar
  12. 12.
    A. Breitenbach, D. Mohr, and T. Kissel, J. Control Release 63, 53 (2000).CrossRefGoogle Scholar
  13. 13.
    R. T. Bustami, H. K. Chan, F. Dehghani, and N. R. Foster, Pharm. Res. 17, 1360 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Amidi, H. C. Pellikaan, H. Kirschberg, A. H. de Boer, D. J. Crommelin, W. E. Hennik, G. Kersten, and W. Jiskoot, Vaccine 25, 6818 (2007).CrossRefGoogle Scholar
  15. 15.
    D. Yu. Zalepugin, A. I. Gamzazade, N. A. Til’kunova, V. S. Mishin, I. V. Chernyshova, and A. R. Khokhlov, Superkrit. Flyuidy Teor. Prakt. 3(1), 24 (2008).Google Scholar
  16. 16.
    E. Reverchon, U.S. Patent No. 20040178529.Google Scholar
  17. 17.
    E. Reverchon and G. J. Della Porta, Supercrit. Fluids 26, 243 (2003).CrossRefGoogle Scholar
  18. 18.
    E. Reverchon, G. Della Porta, and A. Spada, Pharm. Pharmacol. 55, 1465 (2003).Google Scholar
  19. 19.
    E. Reverchon, Ind. Eng. Chem. Res. 41, 2405 (2002).CrossRefGoogle Scholar
  20. 20.
    E. Reverchon and A. Antonacci, J. Supercrit. Fluids 39, 444 (2007).CrossRefGoogle Scholar
  21. 21.
    E. Reverchon, G. Lamberti, and A. Antonacci, J. Supercrit. Fluids 46, 185 (2008).CrossRefGoogle Scholar
  22. 22.
    E. Reverchon and A. Spada, Powder Technol. 141, 100 (2004).CrossRefGoogle Scholar
  23. 23.
    Cai Mei-Qiang, Guan Yi-Xin, Yao Shan-Jing, and Zhu Zi-Qiang, Supercrit. Fluids 43, 524 (2008).CrossRefGoogle Scholar
  24. 24.
    M. A. Rodrigues, J. Li, L. Padrela, A. Almeida, H. A. Matos, and E. G. de Azevedo, J. Supercrit. Fluids 48, 253 (2009).CrossRefGoogle Scholar
  25. 25.
    R. E. Sievers, B. P. Quinn, S. P. Cape, J. A. Searles, C. S. Braun, P. A. Bhagwat, L. G. Rebits, D. H. McAdams, J. L. Burger, J. A. Best, L. Lindsay, M. T. Hernandez, K. O. Kisich, T. Iacovangelo, D. Kristensen, and D. Chen, J. Supercrit. Fluids 42, 385 (2007).CrossRefGoogle Scholar
  26. 26.
    M. B. King and T. R. Boot, Extraction of Natural Products Using Near-Critical Solvents (Blackie Academic & Professional, Glasgow, 1993), p. 1.Google Scholar
  27. 27.
    M. Adler and G. J. Lee, Pharm. Sci. 88, 199 (1999).CrossRefGoogle Scholar
  28. 28.
    R. E. Sievers, B. P. Quinn, S. P. Cape, J. A. Searles, C. S. Braun, P. A. Bhagwat, L. G. Rebits, D. H. McAdams, J. L. Burger, J. A. Best, L. Lindsay, M. T. Hernandez, T. Iacovangelo, D. Kristensen, and D. Chen, in Proc. 8th Conf. on Supercrit. Fluids (2006), p. 407.Google Scholar
  29. 29.
    R. E. Sievers, B. P. Quinn, S. P. Cape, J. A. Searles, C. S. Braun, P. A. Bhagwat, L. G. Rebits, D. H. McAdams, J. L. Burger, J. A. Best, L. Lindsay, M. T. Hernandez, T. Iacovangelo, D. Kristensen, and D. Chen, Supercrit. Fluids 42, 385 (2007).CrossRefGoogle Scholar
  30. 30.
    J. L. Burger, S. P. Cape, C. S. Braun, D. H. McAdams, J. A. Best, P. A. Bhagwat, P. Pathak, L. G. Rebits, and R. E. Sievers, J. Aerosol. Med. 21, 25 (2007).Google Scholar
  31. 31.
    R. E. Sievers, S. P. Cape, K. O. Kisich, D. J. Bennett, C. S. Braun, J. L. Burger, J. A. Best, D. H. McAdams, N. A. Wolters, B. P. Quinn, J. A. Searles, D. M. Krank, P. Pathak, P. A. Bhagwat, and L. G. Rebits, in Proc. Respiratory Drug Delivery, Scottsdale, AZ, USA, 2008, p. 281.Google Scholar
  32. 32.
    S. P. Sellers, G. S. Clark, R. E. Sievers, and J. F. Carpenter, J. Pharm. Sci. 90, 785 (2001).CrossRefGoogle Scholar
  33. 33.
    R. E. Sievers, E. T. S. Haung, J. A. Villa, J. K. Kawamoto, M. M. Evans, and P. R. Brauer, Pure Appl. Chem. 73, 1299 (2001).CrossRefGoogle Scholar
  34. 34.
    R. E. Sievers, E. T. S. Huang, J. A. Villa, G. Engling, and P. R. Brauer, J. Supercrit. Fluids 26, 9 (2003).CrossRefGoogle Scholar
  35. 35.
    S. P. Cape, J. A. Villa, E. T. S. Haung, L. V. Rinner, S. M. Hibbard, J. A. Madsen, T. L. Piester, D. K. Alargov, B. P. Quinn, and R. E. Sievers, in Proc. Intern. Congress for Particle Technology, PARTEC 2004.Google Scholar
  36. 36.
    W. D. Griffiths and G. A. L. J. Dc. Cosemo, Aerosol. Sci. 25, 1425 (1994).CrossRefGoogle Scholar
  37. 37.
    D. Yu. Zalepugin, A. I. Gamzazade, N. A. Til’kunova, V. S. Mishin, I. V. Chernyshova, and A. R. Khokhlov, Superkrit. Flyuidy Teor. Prakt. 3(1), 24 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. Yu. Zalepugin
    • 1
  • N. A. Tilkunova
    • 1
  • E. V. Fronchek
    • 2
  • M. O. Gallyamov
    • 3
  • I. V. Chernyshova
    • 1
  • V. S. Mishin
    • 1
  • Yu. S. Yashin
    • 1
  • T. E. Grigoryev
    • 4
  • A. I. Gamzazade
    • 4
  • A. R. Khokhlov
    • 3
    • 4
  1. 1.State Research Institute of Organic Chemistry and TechnologyMoscowRussia
  2. 2.OOO Research and Production Company ERLONScientific Research Center of Ecological Resources GOROMoscowRussia
  3. 3.Faculty of PhysicsMoscow State UniversityMoscowRussia
  4. 4.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations