Russian Journal of Physical Chemistry B

, Volume 4, Issue 4, pp 543–547

The structure of fullerite C60 intercalated with molecular oxygen

  • Yu. M. Shul’ga
  • V. M. Martynenko
  • E. M. Anokhin
  • A. V. Maksimychev
  • A. N. Trukhanenok
  • A. V. Mishchenko
Structure of Chemical Compounds, Spectroscopy
  • 39 Downloads

Abstract

A (O2)xC60 sample with a high content of oxygen (x ≥ 0.4) and free of technological solvent impurities was obtained by precipitation from solution. For the first time, the results of the determination of the x coefficients using 13C NMR and elemental analysis were compared. It was shown by Raman spectroscopy, mass spectrometry, and NMR that the inclusion of oxygen into fullerite was accompanied by a decrease in the frequency of O=O stretching vibrations by no less than 12 cm−1 compared with gaseous O2. Nevertheless, oxygen exists in the molecular form in (O2)0.4C60 and is released in the form of O2 as the sample is heated to 373 K. The number of oxygen molecules occupying octahedral pores closets to the fullerene molecule takes on all the possible values, from 0 to 6. At room temperature, the (O2)xC60 sample lost oxygen much more slowly than similar products prepared by diffusion saturation of pure fullerite with oxygen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Assink, J. E. Schirber, D. A. Loy, B. Morosin, and G. A. Carlson, J. Mater. Res. 7, 2136 (1992).CrossRefGoogle Scholar
  2. 2.
    B. Renker, H. Schober, M. T. Fernandez-Diaz, and R. Heid, Phys. Rev. B 61, 13960 (2000).CrossRefGoogle Scholar
  3. 3.
    P. Bernier, I. Lukyanchuk, Z. Belahmer, M. Ribet, and L. Firlej, Phys. Rev. B 53, 7535 (1996).CrossRefGoogle Scholar
  4. 4.
    M. Gu, S. Wang, J. Wu, D. Feng, and W. Xu, Chem. Phys. Lett. 411, 167 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Gu, S. Wang, J. Wu, D. Feng, and W. Xu, Eur. Phys. J. D 34(13), 97 (2005).CrossRefGoogle Scholar
  6. 6.
    C. S. Yannoni, R. D. Johnson, G. Meijer, D. S. Bethune, and J. R. Salem, J. Phys. Chem. 95, 9 (1991).CrossRefGoogle Scholar
  7. 7.
    D. W. Mirphy, M. J. Rosseinsky, R. M. Fleming, et al., J. Phys. Chem. Solids 33, 1321 (1992).CrossRefGoogle Scholar
  8. 8.
    G. Zimmer, M. Helmle, M. Mehring, et al., Europhys. Lett. 24, 59 (1993).CrossRefGoogle Scholar
  9. 9.
    Yu. M. Shul’ga, V. M. Martynenko, A. F. Shestakov, et al., Izv. Akad. Nauk, Ser. Khim., No. 4, 662 (2006).Google Scholar
  10. 10.
    M. G. Mitch and J. S. Lannin, J. Phys. Chem. Solids 54, 1801 (1993).CrossRefGoogle Scholar
  11. 11.
    M. G. Mitch and J. S. Lannin, Phys. Rev. B 51, 6784 (1995).CrossRefGoogle Scholar
  12. 12.
    K. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, J. Raman Spectrosc. 27, 351 (1996).CrossRefGoogle Scholar
  13. 13.
    B. M. Ladanyi, L. C. Geiger, T. W. Zerda, X. Song, and J. Jonas, J. Chem. Phys. 89, 670 (1988).CrossRefGoogle Scholar
  14. 14.
    D. Keutel, F. Seifert, K.-L. Oehme, A. Asenbaum, and M. Musso, Phys. Rev. Lett. 85, 3850 (2000).CrossRefGoogle Scholar
  15. 15.
    J. B. Neaton and N. W. Ashcroft, Phys. Rev. Lett. 88, 205503 (2002).CrossRefGoogle Scholar
  16. 16.
    F. A. Gorelli, L. Ulivi, M. Santoro, and R. Bini, Phys. Rev. B 63, 104110 (2001).CrossRefGoogle Scholar
  17. 17.
    M. Gu, T. B. Tang, Ch. Hu, and D. Feng, Phys. Rev. B 58, 659 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. M. Shul’ga
    • 1
  • V. M. Martynenko
    • 1
  • E. M. Anokhin
    • 2
  • A. V. Maksimychev
    • 2
  • A. N. Trukhanenok
    • 1
  • A. V. Mishchenko
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  3. 3.ESIME-SEPI, IPN, ZacatencoMexico, D.F.Mexico

Personalised recommendations