Russian Journal of Physical Chemistry B

, Volume 4, Issue 1, pp 44–52 | Cite as

The statistical integrals of bound and quasi-bound states of gas phase complexes formed by symmetrical nonpoint monomers

  • S. K. Ignatov
  • N. N. Vyshinskii
  • A. G. Razuvaev
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

Equations for calculations of the statistical integrals of bound and quasi-bound weak binary complex states in the gas phase are extended to nonpoint monomers. The equations for states of both types are derived using a unified approach different from those reported earlier. The equations can be used for estimating the thermodynamic functions, equilibrium constants, and concentrations of weakly bound complexes in the ideal gas state and for verifying the results of numerical simulation of association processes in the gas phase.

Keywords

Angular Momentum Statistical Integral Centrifugal Barrier Quasi Bound State Coriolis Interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Vigasin and Z. Slanina, Molecular Complexes in Earth’s, Planetary, Cometary, and Interstellar Atmospheres (World Sci., Singapore, 1998).Google Scholar
  2. 2.
    Atmospheric Water Vapor, Ed. by A. Deepack, T. D. Wilkerson, and L. H. Ruhnke (Academic, New York, 1980), p. 133.Google Scholar
  3. 3.
    Weakly Interacting Molecular Paris: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A. A. Vigasin (Kluwer, Dordrecht, 2003).Google Scholar
  4. 4.
    P. G. Sennikov, S. K. Ignatov, and O. Schrems, Chem. Phys. Chem. 6, 392 (2005).Google Scholar
  5. 5.
    J. E. Headrick and V. Vaida, Phys. Chem. Earth. C 26(7), 479 (2001).Google Scholar
  6. 6.
    M. Staikova and D. J. Donaldson, Phys. Chem. Earth. C 26(7), 473 (2001).Google Scholar
  7. 7.
    H. Goldstein, Classical Mechanics, 2nd ed. (Nauka, Moscow, 1975; Addison-Wesley, Reading, Mass., 1980).Google Scholar
  8. 8.
    S. Ya. Umanskii, Fiz. Khim. Kinetika Gaz. Dinam. Elektron. Zh. 4 (2006), http://www.chemphys.edu.ru/pdf/2006-04-28-001.pdf-http://www.chemphys.edu.ru/pdf/2006-04-28-009.pdf
  9. 9.
    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954; Inostr. Liter., Moscow, 1961).Google Scholar
  10. 10.
    A. A. Vigasin, Atmosph. Ocean. Opt. 2, 907 (1989).Google Scholar
  11. 11.
    Y. Scribano, N. Goldman, R. J. Saykally, and C. Leforestier, J. Phys. Chem. A 110, 5411 (2006).CrossRefGoogle Scholar
  12. 12.
    T. L. Hill, J. Chem. Phys. 23, 617 (1955).CrossRefGoogle Scholar
  13. 13.
    D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 31, 1531 (1959).CrossRefGoogle Scholar
  14. 14.
    D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 33, 942 (1960).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. K. Ignatov
    • 1
  • N. N. Vyshinskii
    • 1
  • A. G. Razuvaev
    • 1
  1. 1.Nizhni Novgorod State UniversityNizhni NovgorodRussia

Personalised recommendations