Russian Journal of Physical Chemistry B

, Volume 4, Issue 1, pp 20–28 | Cite as

The electronic structure of alkali metal oxides

  • Yu. N. Zhuravlev
  • N. G. Kravchenko
  • O. S. Obolonskaya
Structure of Chemical Compounds

Abstract

Crystalline phase total energies, band structures, the distributions of the total and partial densities of electron states, and atomic charges were calculated for lithium, sodium, and potassium oxides, peroxides, superoxides, and ozonides using the CRYSTAL 06 and GAMESS packages in the B3LYP parameterization. For the molecular phases, the geometry was optimized and molecular orbital energies calculated. The results obtained for metal oxides were compared with the experimental photoelectron spectroscopy data and used to analyze their formation and thermal decomposition.

Keywords

Lithium Oxide Potassium Oxide Valence Region Alkali Metal Oxide Sodium Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. K. Vol’nov, Peroxide Compounds of Alkaline Metals (Nauka, Moscow, 1980) [in Russian].Google Scholar
  2. 2.
    W. Hesse, M. Jansen, and W. Schnick, Progr. Solid State Chem. 19(1), 47 (1989).CrossRefGoogle Scholar
  3. 3.
    M. Jancen and H. Nuss, ZAACA 633, 1307 (2007).Google Scholar
  4. 4.
    H. Y. Wu, H. Zhang, X. L. Cheng, and L. C. Cai, Phys. Lett. 360, 352 (2006).CrossRefGoogle Scholar
  5. 5.
    Z. K. Nikitina and V. Ya. Rosolovskii, Zh. Neorg. Khim. 42, 1252 (1997) [Russ. J. Inorg. Chem. 42, 1130 (1997)].Google Scholar
  6. 6.
    S. L. Qiu, C. L. Lin, J. Chen, and M. Stronqin, Phys. Rev. B 41, 7467 (1990).CrossRefGoogle Scholar
  7. 7.
    E. Bertel, F. P. Netzer, and G. Rosina, Phys. Rev. B 39, 6082 (1989).CrossRefGoogle Scholar
  8. 8.
    E. Bertel, N. Memmel, W. Jacob, et al., Phys. Rev. B 39, 6087 (1989).CrossRefGoogle Scholar
  9. 9.
    M. W. Ruckman, J. Chen, S. L. Qin, P. Kuiper, and M. Stronqin, Phys. Rev. B 67, 2533 (1991).CrossRefGoogle Scholar
  10. 10.
    M. Pedio, Z. Y. Wu, M. Benfatto, et al., Phys. Rev. B 66, 4109 (2002).CrossRefGoogle Scholar
  11. 11.
    M. M. Islam, T. Bredow, and C. Minot, J. Phys. Chem. B 110, 9413 (2006).CrossRefGoogle Scholar
  12. 12.
    E. A. Mikajlo, H. E. Dorsett, and M. J. Ford, J. Chem. Phys. 120, 17099 (2004).CrossRefGoogle Scholar
  13. 13.
    A. Shukla, M. Dolg, and P. Fuide, J. Chem. Phys. 108, 8521 (1998).CrossRefGoogle Scholar
  14. 14.
    V. Maslyuk, M. M. Islam, and T. Bredow, Phys. Rev. B 72, 25101 (2005).CrossRefGoogle Scholar
  15. 15.
    V. Mauchamp, F. Boucher, G. Ouvrarf, and P. Moreaw, Phys. Rev. B 74, 5106 (2006).CrossRefGoogle Scholar
  16. 16.
    E. A. Mikajlo and M. J. Ford, J. Phys. Condens. Matter 15, 6955 (2003).CrossRefGoogle Scholar
  17. 17.
    R. D. Eithraj, G. Jaiganeshk, and G. Kalpana, Phys. B: Condens. Matter 396, 124 (2007).CrossRefGoogle Scholar
  18. 18.
    Z. Cancarevie, J. C. Schön, and M. Jansen, Phys. Rev. B 73, 4114 (2006).Google Scholar
  19. 19.
    H. Wu, H. Zhang, X. Cheng, and L. Cai, Philosoph. Magazine 87, 3373 (2007).CrossRefGoogle Scholar
  20. 20.
    Yu. N. Zhuravlev, Yu. M. Basalaev, and A. S. Poplavnoi, Teor. Eksp. Khim. 39(2), 72 (2003).Google Scholar
  21. 21.
    M. Allavena and E. Biaisten-Barojas, J. Chem. Phys. 75, 787 (1981).CrossRefGoogle Scholar
  22. 22.
    B. Tremblay, P. Roy, L. Manceron, et al., J. Chem. Phys. 103, 1284 (1995).CrossRefGoogle Scholar
  23. 23.
    P. Borowski, B. O. Roos, S. C. Racine, T. J. Lee, and S. Carter, J. Chem. Phys. 103, 266 (1995).CrossRefGoogle Scholar
  24. 24.
    R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 06 User’s Manual (Univ. of Torino, Torino, 2006).Google Scholar
  25. 25.
    M. Catti, G. Valerio, R. Dovesi, and M. Causa, Phys. Rev. B 49, 14179 (1994).CrossRefGoogle Scholar
  26. 26.
    L. Valenzano, F. J. Torres, F. Pascale, C. M. Zicovich-Wolson, and R. Doversi, Z. Phys. Chem. 220, 893 (2006).Google Scholar
  27. 27.
    L. Ojamue, K. Hermansson, C. Pisani, M. Caus, and C. Roetti, Acta Crystallogr., Sect. B: Struct. Sci. 50, 268 (1994).CrossRefGoogle Scholar
  28. 28.
    R. Dovesi, C. Roetti, Fava C. Freyria, M. Prencipe, and V. R. Saunders, Chem. Phys. 156, 11 (1991).CrossRefGoogle Scholar
  29. 29.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  30. 30.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  31. 31.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  32. 32.
    J. Paier, M. Marsman, K. Hummer, et al., J. Chem. Phys. 124, 4709 (2006).CrossRefGoogle Scholar
  33. 33.
    A. E. Mattsson, R. Armiento, J. Paier, et al., J. Chem. Phys. 128, 4714 (2008).CrossRefGoogle Scholar
  34. 34.
    J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 4103 (2007).CrossRefGoogle Scholar
  35. 35.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  36. 36.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  37. 37.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. A 37, 785 (1988).CrossRefGoogle Scholar
  38. 38.
    R. Wyckoff, Crystal Ctructures (Interscience, New York, 1963).Google Scholar
  39. 39.
    L. G. Cota and P. de la Mora, Acta Crystallogr. B 61, 133 (2005).CrossRefGoogle Scholar
  40. 40.
    R. L. Tallman, J. L. Margrave, and S. W. Bailey, JACSA 79, 2979 (1957).CrossRefGoogle Scholar
  41. 41.
    T. Bremm and U. Jansen, ZAACA 610, 64 (1992).Google Scholar
  42. 42.
    M. Ziegler, M. Rosenfeld, W. Kaenzug, and P. Fischer, HPACA 49, 57 (1976).Google Scholar
  43. 43.
    S. C. Abrahams and J. Kalnajs, Acta Crystal. 8, 503 (1955).CrossRefGoogle Scholar
  44. 44.
    W. Klein, K. Armbruster, and M. Jansen, Chem. Commun. 6, 707 (1998).CrossRefGoogle Scholar
  45. 45.
    T. Kellersohn, N. Korber, and M. Jansen, J. Am. Chem. Soc. 115, 11254 (1993).CrossRefGoogle Scholar
  46. 46.
    D. Bellert and W. H. Breckenridge, J. Chem. Phys. 114, 2871 (2001).CrossRefGoogle Scholar
  47. 47.
    L. Liu, V. E. Henrich, W. P. Ellis, and I. Shindo, Phys. Rev. B 54, 2236 (1996).CrossRefGoogle Scholar
  48. 48.
    S. L. Qiu, C. L. Lin, J. Chen, and M. Strongen, Phys. Rev. B 39(9), 6194 (1989).CrossRefGoogle Scholar
  49. 49.
    J. X. Wu, M. S. Ma, X. M. Liu, J. S. Zhu, and M. R. Ji, Phys. Rev. B 51, 14286 (1995).CrossRefGoogle Scholar
  50. 50.
    A. U. Khan and S. D. Mahanti, J. Chem. Phys. 63, 2271 (1975).CrossRefGoogle Scholar
  51. 51.
    M. L. Shek, X. Pan, M. Strongin, and M. W. Ruckman, Phys. Rev. B 34, 3741 (1986).CrossRefGoogle Scholar
  52. 52.
    M. S. Ma, M. R. Ji, W. W. Cai, et al., Phys. Rev. B 56, 4913 (1997).CrossRefGoogle Scholar
  53. 53.
    J. X. Wu, M. S. Ma, H. G. Zheny, et al., Phys. Rev. B 60, 17102 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. N. Zhuravlev
    • 1
  • N. G. Kravchenko
    • 1
  • O. S. Obolonskaya
    • 1
  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations