Russian Journal of Physical Chemistry B

, Volume 3, Issue 2, pp 264–272 | Cite as

Quantum dynamics of nanosystems with nonequidistant spectrum

  • V. A. BenderskiiEmail author
  • E. I. Kats
A.A. Ovchinnikov’s 70th Birthday Anniversary


A quantum problem of the evolution of a system coupled to a reservoir for which the interlevel spacing monotonically increases or decreases with increasing energy was solved. It was demonstrated that, despite the absence of an unambiguous definition of the recurrence cycle period, there is a wide range of parameters within which the basic feature of the evolution of system with an equidistant spectrum persist: the existence of the Loschmidt echo and mixing of the cycles that initiates the transition from a regular to a stochastic dynamic behavior. The results predict the existence of nonergodic nanosystems in which, as they evolve, energy periodically concentrates on certain vibrational degrees of freedom.


Quantum Dynamic Transition State Theory Secular Equation Reservoir State Partial Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).CrossRefGoogle Scholar
  2. 2.
    A. J. F. Siegert, Phys. Rev. 56, 750 (1939).CrossRefGoogle Scholar
  3. 3.
    A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions and Decays in Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1971, 2nd ed.; Israel Program for Scientific Translations, Jerusalem, 1966).Google Scholar
  4. 4.
    P. Grigolini, Quantum Mechanical Irreversibility (World Sci., Singapore, 1993).Google Scholar
  5. 5.
    I. Prigogin and T. Y. Petrovsky, Adv. Chem. Phys. 99, 1 (1997).Google Scholar
  6. 6.
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, et al., Rev. Mod. Phys. 59, 1 (1987).CrossRefGoogle Scholar
  7. 7.
    U. Weiss, Quantum Dissipative Systems (World Sci., Singapore, 1999).CrossRefGoogle Scholar
  8. 8.
    L. H. Yu and L. H. Sun, Phys. Rev. A 49, 592 (1994).CrossRefGoogle Scholar
  9. 9.
    V. A. Benderskii, D. E. Makarov, and C. A. Wight, Chemical Dynamics at Low Temperatures (Wiley, New York, 1994).Google Scholar
  10. 10.
    V. A. Benderskii, E. V. Vetoshkin, I. S. Irgibaeva, and H. P. Trommsdorff, Chem. Phys. 262, 369, 393 (2000).CrossRefGoogle Scholar
  11. 11.
    G. V. Milnikov and H. Nakamura, Phys. Chem. Chem. Phys. 10, 1374 (2008).CrossRefGoogle Scholar
  12. 12.
    O. Bohigas, S. Tomsovic, and D. Ulmo, Phys. Rep. 223, 43 (1993).CrossRefGoogle Scholar
  13. 13.
    V. K. B. Kota, Phys. Rep. 347, 223 (2001).CrossRefGoogle Scholar
  14. 14.
    T. Papenbrock and H. A. Weidenmuller, Rev. Mod. Phys. 79, 997 (2007).CrossRefGoogle Scholar
  15. 15.
    M. L. Mehta, Random Matrices (Academic, New York, 1968).Google Scholar
  16. 16.
    E. B. Stechel and E. J. Heller, Ann. Rev. Phys. Chem. 35, 563 (1984).CrossRefGoogle Scholar
  17. 17.
    R. Schinke, Photodissociation Dynamics (Cambridge Univ. Press, Cambridge, 1994).Google Scholar
  18. 18.
    M. Joeux, S. C. Farantos, and R. Schinke, J. Phys. Chem. A 106, 5407 (2002).CrossRefGoogle Scholar
  19. 19.
    M. Ben-Nun and T. J. Martinez, Chem. Phys. Lett. 298, 57 (1998).CrossRefGoogle Scholar
  20. 20.
    T. Vreven, F. Bernardi, M. Caravelli, et al., J. Am. Chem. Soc. 119, 1267 (1997).CrossRefGoogle Scholar
  21. 21.
    M. Ben-Nun, F. Molnar, H. Lu, et al., Faraday. Discuss. 110, 447 (1984).CrossRefGoogle Scholar
  22. 22.
    S. Hayashi, E. Tajkhorshid, and K. Schulten, Biophys. J. 85, 1440 (2003).CrossRefGoogle Scholar
  23. 23.
    C. J. Fesko, J. D. Eaves, J. J. Loparo, et al., Science 301, 1698 (2003).CrossRefGoogle Scholar
  24. 24.
    A. V. Benderskii and K. B. Eisenthal, J. Phys. Chem. A 106, 7482 (2002).CrossRefGoogle Scholar
  25. 25.
    V. A. Benderskii, L. A. Falkovsky, and E. I. Kats, JETP Lett. 86, 221 (2007).CrossRefGoogle Scholar
  26. 26.
    R. Zwangiz, Lecture Notes in Theor. Phys. 3, 106 (1960).Google Scholar
  27. 27.
    M. Tabor, Chaos and Integrability in Nonlinear Dinamics (Wiley, New York, 1989).Google Scholar
  28. 28.
    M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).Google Scholar
  29. 29.
    V. A. Benderskii and E. I. Kats, Pis’ma Zh. Eksp. Teor. Fiz. 88, 338 (2008) [JETP Lett. 88, 338 (2008)].Google Scholar
  30. 30.
    A. M. Vishik, I. P. Kornfel’d, and Ya. G. Sinai, General Ergodic Theory of Transformation Groups with Invariant Measure. Modern Problems of Mathematics. Fundamental Directions (VINITI, Moscow, 1985), Vol. 2 [in Russian].Google Scholar
  31. 31.
    V. A. Benderskii and E. I. Kats, Phys. Rev. E 65, 036217 (2002).Google Scholar
  32. 32.
    V. A. Benderskii and E. I. Kats, Phys. Rev. A 69, 062508 (2004).Google Scholar
  33. 33.
    V. A. Benderskii, E. V. Vetoshkin, and E. I. Kats, HAIT J. 1, 386 (2004).Google Scholar
  34. 34.
    S. Luzzatto, “Stochastic Behavior in Nonuniformly Expanding Maps,” arXiv:math.DS/0409085 v1 (Sept. 6, 2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Institute Laue-LangevinGrenobleFrance

Personalised recommendations