A Biosensor Study of Protein Interaction with the 20S Proteasome Core Particle

  • O. A. BuneevaEmail author
  • O. V. Gnedenko
  • M. V. Medvedeva
  • V. G. Zgoda
  • A. S. Ivanov
  • A. E. Medvedev


It becomes increasingly clear that ubiquitination of cellular proteins is not an indispensable prerequisite of their degradation in proteasomes. There are a number of proteins to be eliminated which are not pre-ubiquitinated for their recognition by the regulatory subcomplex of the 26S proteasome, but which directly interact with the 20S proteasome core particle (20S proteasome). The obligatory precondition for such interaction consists in existence of disordered (hydrophobic) fragments in the target protein. In this study we have investigated the interaction of a number of multifunctional (moonlighting) proteins (glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldolase, pyruvate kinase) and neurodegeneration-related proteins (α-synuclein, myelin basic protein) with 20S proteasome immobilized on the SPR-biosensor chip and stabilized by means of a bifunctional agent dimethyl pimelimidate (in order to prevent possible dissociation of this subcomplex). Only two of the investigated proteins (aldolase and pyruvate kinase) interacted with the immobilized 20S proteasome (Kd of 8.17 × 10–7 M and 5.56 × 10–7 M, respectively). In addition to earlier detected GAPDH ubiquitination, mass spectrometric analysis of the studied proteins revealed the presence of the ubiquitin signature (Lys-ε-Gly-Gly) only in aldolase. Oxidation of aldolase and pyruvate kinase, which promotes elimination of proteins via their direct interaction with 20S proteasome, caused a 2−3-fold decrease in their Kd values as compared with this parameter obtained for the intact proteins. The results of this study provide further evidence for direct interaction of both ubiquitinated proteins (aldolase), and non-ubiquitinated proteins (pyruvate kinase) with the 20S proteasome core particle (20S proteasome). The effectiveness of this interaction is basically equal for the ubiquitinated proteins and non-ubiquitinated proteins.


proteasome ubiquitination intrinsically disordered proteins multifunctional proteins optical biosensor pyruvate kinase aldolase 



LCMS/MS analysis of proteins was performed in the Center of Collective Use “Human Proteome” at the Institute of Biomedical Chemistry.


This work was performed within the framework of the Program for Basic Research of State Academies of Sciences for 2013−2020 (biosensor and proteomic analysis) and was partially supported by the Russian Foundation for Basic Research (project no. 19-015-00073a; preparation of the 20S proteasome core particle and proteins for biosensor analysis).


This study was performed in accordance with generally accepted rules and norms for the humane treatment of experimental animals.


  1. 1.
    Hershko, A. and Ciechanover, A., Annu. Rev. Biochem., 1992, vol. 61, pp. 761–807.CrossRefGoogle Scholar
  2. 2.
    Hershko, A. and Ciechanover, A., Annu. Rev. Biochem., 1998, vol. 67, pp. 425–479.CrossRefGoogle Scholar
  3. 3.
    Tanaka, K., Proc. Jpn. Acad.,Ser. B, 2009, vol. 85, pp. 12–36.Google Scholar
  4. 4.
    Vertegaal, A.C.O., Chem. Rev., 2011, vol. 111, pp. 7923−7940.CrossRefGoogle Scholar
  5. 5.
    Bremm, A. and Komander, D., Trends in Biochem. Sci., 2011, vol. 36, no. 7, pp. 355–363.Google Scholar
  6. 6.
    Kravtsova-Ivantsiv, Y. and Ciechanover, A., J. Cell. Science, 2012, vol. 125, pp. 539–548.CrossRefGoogle Scholar
  7. 7.
    Buneeva, O.A. and Medvedev, A.E., Biomed. Khim., 2016, vol. 62, no. 5, pp. 496–509.CrossRefGoogle Scholar
  8. 8.
    Sánchez-Lanzas, R. and Castaño, J.G., Biomolecules, 2014, vol. 4, pp. 1140–1154.CrossRefGoogle Scholar
  9. 9.
    Buneeva, O.A. and Medvedev, A.E., Biomed. Khim., 2018, vol. 64, no. 2, pp. 134–148.CrossRefGoogle Scholar
  10. 10.
    Dachsel, J.C., Lucking, C.B., Deeg, S., et al., FEBS Lett., 2005, vol. 579, pp. 3913–3919.CrossRefGoogle Scholar
  11. 11.
    Alvarez-Castelao, B., Goethals, M., Vandekerckhove, J., and Castano, J.G., Biochim. Biophys. Acta, 2014, vol. 1843, pp. 352–365.CrossRefGoogle Scholar
  12. 12.
    Alvarez-Castelao, B., Munoz, C., Sanchez, I., Goethals, M., Vandekerckhove, J., and Castano, J.G., Biochim. Biophys. Acta, 2012, vol. 1823, pp. 524–533.CrossRefGoogle Scholar
  13. 13.
    David, D.C., Layfield, R., Serpell, L., Narain, Y., Goedert, M., and Spillantini, M.G.J., J. Neurochem., 2002, vol. 83, pp. 176–185.CrossRefGoogle Scholar
  14. 14.
    Cardozo, C. and Michaud, C., Arch. Biochem. Biophys., 2002, vol. 408, pp. 103–110.CrossRefGoogle Scholar
  15. 15.
    Belogurov, A., Jr., Kuzina, E., Kudriaeva, A., Kononikhin, A., Kovalchuk, S., Surina, Y., Smirnov, I., Lomakin, Y., Bacheva, A., Stepanov, A., Karpova, Y., Lyupina, Y., Kharybin, O., Melamed, D., Ponomarenko, N., Sharova, N., Nikolaev, E., and Gabibov, A., FASEB J., 2015, vol. 29, pp. 1–13.CrossRefGoogle Scholar
  16. 16.
    Ben-Nissan, G. and Sharon, M., Biomolecules, 2014, vol. 4, pp. 862–884.CrossRefGoogle Scholar
  17. 17.
    Erales, J. and Coffino, P., Biochim. Biophys. Acta, 2014, vol. 1843,pp. 216–221.CrossRefGoogle Scholar
  18. 18.
    Raynes, R.I., Pomatto, L.C.D., and Davies, K.J.A., Mol. Aspects Med., 2016, vol. 50, pp. 41–55.CrossRefGoogle Scholar
  19. 19.
    Uversky, V.N., Oldfield, C.J., and Dunker, A.K., J. Mol. Recognit., 2005, vol. 18, pp. 343–384.CrossRefGoogle Scholar
  20. 20.
    Serdyuk, I.N., Molecular Biology, 2007, vol. 41, no. 2, pp. 262–277.CrossRefGoogle Scholar
  21. 21.
    Wright, P.E. and Dyson, H.J., J. Mol. Biol., 1999, vol. 293, pp. 321–331.CrossRefGoogle Scholar
  22. 22.
    Jeffery, C.J., Trends Biochem. Sci., 1999, vol. 24, pp. 8–11.CrossRefGoogle Scholar
  23. 23.
    Jeffery, C.J., Frontiers Genetics, 2015, vol. 6, 211.CrossRefGoogle Scholar
  24. 24.
    Mani, M., Chen, C., Amblee, V., Liu, H., Mathur, T., Zwicke, G., Zabad, S., Patel, B., Thakkar, J., and Jeffery, C.J., Nucl. Acids Res., 2015, vol. 43, pp. D277–D282.CrossRefGoogle Scholar
  25. 25.
    Gupta, V. and Bamezai, R.N.K., Protein Science, 2010, vol. 19, pp. 2031–2044.CrossRefGoogle Scholar
  26. 26.
    Dalby, A., Dauter, Z., and Littlechild, J.A., Protein Science, 1999, vol. 8, pp. 291–297.CrossRefGoogle Scholar
  27. 27.
    Buneeva, O.A., Gnedenko, O.V., Kopylov, A.T., Medvedeva, M.V., Zgoda, V.G., Ivanov, A.S., and Medvedev, A.E., Biochemistry (Moscow), 2017, vol. 82, no. 9, pp. 1338–1344.Google Scholar
  28. 28.
    Scopes, R.K. and Stoter, A., Methods Enzymol., 1982, vol. 90, pt. E, pp. 479−490.Google Scholar
  29. 29.
    Buneeva, O.A., Gnedenko, O.V., Medvedeva, M.V., Ivanov, A.S., and Medvedev, A.E., Biomed. Khim., 2016, vol. 62, no. 2, pp. 60–163.Google Scholar
  30. 30.
    Kastle, M., Reega, S., Rogowska-Wrzesinska, A., and Grune, T., Free Rad. Biol. Med., 2012, vol. 53, pp. 1468–1477.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. A. Buneeva
    • 1
    Email author
  • O. V. Gnedenko
    • 1
  • M. V. Medvedeva
    • 2
  • V. G. Zgoda
    • 1
  • A. S. Ivanov
    • 1
  • A. E. Medvedev
    • 1
  1. 1.Institute of Biomedical ChemistryMoscowRussia
  2. 2.Biological Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations