Advertisement

The Study of the Neuroprotective Effects of Carnosine in the Experimental Model of Focal Cerebral Ischemia/Reperfusion

  • A. A. DevyatovEmail author
  • T. N. Fedorova
  • S. L. Stvolinsky
  • I. N. Ryzhkov
  • N. A. Riger
  • V. A. Tutelyan
Article
  • 16 Downloads

Abstract

Oxidative stress is one of the key factors responsible for brain tissue damage in ischemia; this points to the use of antioxidants under these conditions. One of the promising antioxidants for the therapy of ischemic stroke is a natural dipeptide carnosine. In this study the neuroprotective effect of dietary carnosine administration has been investigated in an experimental model of focal cerebral ischemia/reperfusion in Wistar rats. Animals received carnosine with a diet at a daily dose of 150 mg/kg for 7 days before transient occlusion of the middle cerebral artery (MCA), performed for 60 min. At 24 h after the onset of ischemia the effect of carnosine administration on the area of the infarct size was evaluated in animals. In brain tissue of animals the content of malondialdehyde (MDA), protein carbonyls (PC), total antioxidant capacity (TAC), total activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione transferase (GT), the content of isoprostanes and cytokines were measured. Treatment with carnosine significantly reduced the infarct size, increased TAC, and decreased the levels of MDA and isoprostanes in the brain tissue. Thus carnosine consumed prophylactically with the diet for 7 days before the ischemia induced by MCA occlusion in rats exhibited the direct neuroprotective effect, maintained high antioxidant activity of the brain tissue, reduced the level of oxidative damage markers (MDA and isoprostanes) but had no effect on the activity of antioxidant enzyme systems and production of cytokines in the brain tissue.

Keywords:

brain ischemia oxidative stress inflammation neuroprotection carnosine 

Notes

REFERENCES

  1. 1.
    World Health Organization [Internet]. Global Health Estimates 2015: Deaths by Cause, Age, Sex, by Country and by Region, 2000−2015. Geneva, 2016 [cited : Jan 30, 2018]. Available from: http://www.who.int/healthinfo/ global_burden_disease/estimates/en/index1. html3.Google Scholar
  2. 2.
    Warner, D.S., J. Exp. Biol., 2004, vol. 207, pp. 3221–3231.  https://doi.org/10.1242/jeb.01022 CrossRefGoogle Scholar
  3. 3.
    McCann, S.K., Dusting, G.J., and Roulston, C.L., J. Neurosci. Res., 2008, vol. 86, pp. 2524–2534.  https://doi.org/10.1002/jnr.21700 CrossRefGoogle Scholar
  4. 4.
    Singhal, A.B., Lo, E.H., Dalkara, T., et al., in Acute Ischemic Stroke, González R.G., Hirsch, J.A., Lev, M.H., Eds., Berlin-Heidelberg: Springer-Verlag, 2011, pp. 1−24.Google Scholar
  5. 5.
    Allen, C.L. and Bayraktutan, U., Int. J. Stroke, 2009, vol. 4, pp. 461–470.  https://doi.org/10.1111/j.1747-4949.2009.00387.x CrossRefGoogle Scholar
  6. 6.
    Majid, A., ISRN Neurol., 2014, vol. 2014, 515716.  https://doi.org/10.1155/2014/515716 CrossRefGoogle Scholar
  7. 7.
    Brahmbhatt, V., Oliveira, M., Briand, M., et al., J. Nutr. Biochem., 2013, vol. 24, pp. 104–111.  https://doi.org/10.1016/j.jnutbio.2012.02.014 CrossRefGoogle Scholar
  8. 8.
    Guiotto, A., Calderan, A., Ruzza, P., et al., Curr. Med. Chem., 2005, vol. 12, pp. 2293–2315.  https://doi.org/10.2174/0929867054864796 CrossRefGoogle Scholar
  9. 9.
    Gil-Agustí, M., Esteve-Romero, J., and Carda-Broch, S., J. Chromatogr. A, 2008, vol. 1189, nos. 1–2, pp. 444–450.  https://doi.org/10.1016/j.chroma.2007.11.075 CrossRefGoogle Scholar
  10. 10.
    Boldyrev, A.A., Aldini, G., and Derave, W., Physiol. Rev., 2013, vol. 93, pp. 1803–1845.  https://doi.org/10.1152/physrev.00039.2012 CrossRefGoogle Scholar
  11. 11.
    Hipkiss, A.R., Baye, E., and de Courten, B., Maturitas, 2016, vol. 93, pp. 28–33.  https://doi.org/10.1016/j.maturitas.2016.06.002 CrossRefGoogle Scholar
  12. 12.
    Davis, C.K., Laud, P.J., Bahor, Z., Rajanikant, G.K., and Majid, A., J. Cereb. Blood Flow Metab., 2016, vol. 36, pp. 1686–1694.  https://doi.org/10.1177/0271678X16658302 CrossRefGoogle Scholar
  13. 13.
    Devyatov, A.A., Fedorova, T.N., Stvolinsky, S.L., et al., Byul. Eksper. Biol. Med., 2017, vol. 163, pp. 195–198.  https://doi.org/10.1007/s10517-017-3764-4 CrossRefGoogle Scholar
  14. 14.
    Doll, D.N., Barr, T.L., and Simpkins, J.W., Aging Disease, 2014, vol. 5, pp. 294–306.  https://doi.org/10.14336/AD.2014.0500294 Google Scholar
  15. 15.
    Waisman, A., Hauptmann, J., and Regen, T., Acta Neuropathol., 2015, vol. 129, pp. 625–637.  https://doi.org/10.1007/s00401-015-1402-7 CrossRefGoogle Scholar
  16. 16.
    Zhao, X., Wang, H., Sun, G., et al., J. Neurosci., 2015, vol. 35, no. 32, pp. 11 281–11 291.  https://doi.org/10.1523/JNEUROSCI.1685-15.2015 CrossRefGoogle Scholar
  17. 17.
    Stvolinsky, S.L., Fedorova, T.N., Devyatov, A.A., et al., Korsakov Zhurn. Nevrol. Nevropatol., 2017, vol. 117, no. 12-2, pp. 60–64.  https://doi.org/10.17116/jnevro201711712260-64
  18. 18.
    Alexandrova, M. and Bochev, P., in Oxidative Stress and Neurodegenerative Disorders, Qureshi, G. and Parvez, S., Eds., Elsevier Science, 2007, pp. 313–368.Google Scholar
  19. 19.
    Boldyrev, A.A., Dobrotvorskaya, I.S., Stepano-va, M.S., et al., Free Rad. Biol. Med., 2011, vol. 51, suppl., S12.CrossRefGoogle Scholar
  20. 20.
    Park, H.S., Han, K.H., Shin, J.A., et al., J. Korean Neurosurg. Soc., 2014, vol. 55, pp. 125–130.  https://doi.org/10.3340/jkns.2014.55.3.125 CrossRefGoogle Scholar
  21. 21.
    Zhang, Z.Y., Sun, B.L., Yang, M.F., et al., Cell Mol. Neurobiol., 2015, vol. 35, pp. 147–157.  https://doi.org/10.1007/s10571-014-0106-1 CrossRefGoogle Scholar
  22. 22.
    Klebanov, G.I., Teselkin, Yu.O., Babenkova, I.V., et al., Biochem. Mol. Biol. Int., 1997, vol. 43, pp. 99–106.  https://doi.org/10.1080/15216549700203861 Google Scholar
  23. 23.
    Boldyrev, A.A., Stvolinsky, S.L., Ryasina, T.V., et al., Byul. Eksper. Biol. Med., 1994, vol. 117, pp. 200–202.  https://doi.org/10.1007/BF02444145 Google Scholar
  24. 24.
    Boldyrev, A.A., Carnosine and Oxidative Stress in Cells and Tissues, New York: Nova Biomed., 2007.Google Scholar
  25. 25.
    Fleisher-Berkovich, S., Abramovitch-Dahan, C., Ben-Shabat, S., et al., Peptides, 2009, vol. 30, pp. 1306–1312.  https://doi.org/10.1016/j.peptides.2009.04.003 CrossRefGoogle Scholar
  26. 26.
    Tsai, S.J., Kuo, W.W., and Liu, W.H., J. Agric. Food Chem., 2010, vol. 58, pp. 11 510–11 516.  https://doi.org/10.1021/jf103258p CrossRefGoogle Scholar
  27. 27.
    Hu, W.W. and Chen Z., ACS Chem. Neurosci., 2012, vol. 3, pp. 238−247.  https://doi.org/10.1021/cn200126p CrossRefGoogle Scholar
  28. 28.
    Tripathi, T., Pandey, R., Raza, A., et al., in Biomedical Aspects of Histamine, Khardori, N., Khan, R.A., Tripathi, T., Eds., Dordrecht: Springer, 2010, pp. 421–436.Google Scholar
  29. 29.
    Kalogeris, T., Baines, C.P., Krenz, M., et al., in Comprehensive Physiology, Hoboken: John Wiley & Sons, Inc., 2016, pp. 113–170.  https://doi.org/10.1002/cphy.c160006 Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Devyatov
    • 1
    • 2
    Email author
  • T. N. Fedorova
    • 1
  • S. L. Stvolinsky
    • 1
  • I. N. Ryzhkov
    • 2
  • N. A. Riger
    • 2
  • V. A. Tutelyan
    • 2
  1. 1.Research Centre of NeurologyMoscowRussia
  2. 2.Federal Research Centre of Nutrition, Biotechnology and Food SafetyMoscowRussia

Personalised recommendations