Advertisement

Apolipoprotein A-I Stimulates Secretion of Insulin and Matrix Metalloproteinases by Islets of Langerhans

  • I. F. Usynin
  • O. N. Poteryaeva
  • G. S. Russkikh
  • A. V. Zubova
  • K. Yu. Boiko
  • L. M. Polyakov
Article
  • 3 Downloads

Abstract

The development of type 2 diabetes mellitus (DM2) is accompanied by impairments in lipid metabolism. These include the increase in serum levels of atherogenic fractions of very low-density (VLDL) and low-density lipoproteins (LDL), total cholesterol, triglycerides, and apoB. The level of antiatherogenic high density lipoproteins (HDL) and the content of apolipoprotein A-I (apoA-I) decreased. To study the effect of the observed metabolic changes on insulin secretion in vitro, we have used the islets of Langerhans isolated from the rat pancreas. It has been found that incubation of the islets in the presence of serum of obese patients and patients with decompensated DM2 leads to a 2.4-fold and 5.0-fold decrease in insulin secretion, respectively. On the contrary, addition of HDL to the incubation medium caused a 3.4-fold increase in the insulin secretion. A similar effect was observed in the presence of apoA-I, the main protein component of HDL. In the presence of apoA-I, the extracellular activity of matrix metalloproteinases (MMPs) demonstrated a 10-fold increase. The addition of LDL and VLDL to the islets did not change the insulin secretion and MMP activity. Our results emphasize an important role of HDL and apoA-I in the regulation of the insulin secretion by β-cells and the MMP activity in the islets of Langerhans.

Keywords:

type 2 diabetes mellitus apolipoprotein A-I insulin matrix metalloproteinases islets of Langerhans 

Notes

REFERENCES

  1. 1.
    Taskinen, M.R., Diabetologia, 2003, vol. 46, pp. 733–749.CrossRefGoogle Scholar
  2. 2.
    Bochkov, V.N. and Tkachuk, V.A., Rossiiskii Fiziologicheskii Zhurnal im. I.M. Sechenova, 2005, vol. 91, no. 1, pp. 12–30.Google Scholar
  3. 3.
    Zhou, X. and Von Eckardstein, A., J. Huazhong. Univ. Sci. Technolog. Med. Sci., 2002, vol. 22, pp. 270–272.CrossRefGoogle Scholar
  4. 4.
    Yamato, K., Tamasawa, N., Murakami, H., Guan, J.Z., Tanabe, J., Matsui, J., Suda, T., and Yasujima, M., Tohoku J. Exp. Med., 2003, vol. 201, pp. 47–54.CrossRefGoogle Scholar
  5. 5.
    Nofer, J.R., Handb. Exp. Pharmacol., 2015, vol. 224, pp. 229–256.CrossRefGoogle Scholar
  6. 6.
    Panin, L.E., Maksimov, V.F., Usynin, I.F., and Korostyshevskaya, I.M., J. Steroid Biochem. Mol. Biol., 2002, vol. 81, pp. 69–76.CrossRefGoogle Scholar
  7. 7.
    Tkachenko, T.A., Pechenkina, A.Yu., Poteryaeva, O.N., Russkikh, G.S., Dudarev, A.N., Davydenko, S.V., and Usynin, I.F., Meditsina i Obrazovanie v Sibiri, 2014, no. 3 (e-journal).Google Scholar
  8. 8.
    Usynin, I.F., Dudarev, A.N., Gorodetskaya, A.Yu., Miroshnichenko, S.M., Tkachenko, T.A., and Tkachenko V.I., Byull. Eksper. Biol. Med., 2017, vol. 164, pp. 285–288.Google Scholar
  9. 9.
    Lacy, P.E. and Kostianovsky, M., Diabetes, 1967, vol. 16, pp. 35–39.CrossRefGoogle Scholar
  10. 10.
    Mills, G.L., Lane, P.L., and Weech, P.K., in Laboratory Techniques in Biochemistry and Molecular Biology Vol. 14, Burden, R.H. and van Knippenberg, P.H., Eds., Amsterdam: Elsevier, 1984, pp. 18–116.Google Scholar
  11. 11.
    Polyakov, L.M., Poteryaeva, O.N., and Panin, L.E., Biomed. Khim., 1999, vol. 45, pp. 65–69.Google Scholar
  12. 12.
    Nagase, H. and Woessner, J., J. Biol. Chem., 1999, vol. 274, no. 31, pp. 21491–21494.CrossRefGoogle Scholar
  13. 13.
    Ebtehaj, S., Gruppen, E.G., Parvizi, M., Tietge, U.J.F., and Dullaart, R.P.F., Cardiovascular Diabetology, 2017, vol. 16, 132.CrossRefGoogle Scholar
  14. 14.
    Kodama, S., Horikawa, C., Fujihara, K., Yoshizawa,S., Yachi, Y., Tanaka, S., Ohara, N., Matsunaga, S., Yamada, T., Hanyu, O., and Sone, H., Obes. Rev., 2014, vol. 15, pp. 202–214.CrossRefGoogle Scholar
  15. 15.
    Avogaro, P., Bon Bittolo, G., and Gazzolato, G., in Atherosclerosis, Gotto, A.M., Smith, L.C., and Allen, B., Eds., 1979, pp. 816–819.Google Scholar
  16. 16.
    Femlak, M., Gluba-Brzózka, A., Ciałkowska-Rysz, A., and Rysz, J., Lipids in Health and Disease, 2017, vol. 16, 207.CrossRefGoogle Scholar
  17. 17.
    Poteryaeva, O.N., Russkikh, G.S., and Panin, L.E., Byull. Eksper. Biol. Med., 2011, vol. 152, pp. 509–510.Google Scholar
  18. 18.
    Christoffersson, G., Waldén, T., Sandberg, M., Opdenakker, G., Carlsson, P.O., and Phillipson, M., Am. J. Pathol., 2015, vol. 185, pp. 1094–1103.CrossRefGoogle Scholar
  19. 19.
    Aston-Mourney, K., Zraika, S., Udayasankar, J., Subramanian, S.L., Green, P.S., Kahn, S.E., and Hull, R.L., J. Biol. Chem., 2013, vol. 288, pp. 3553−3559.CrossRefGoogle Scholar
  20. 20.
    Newby, A., Arterioscler. Thromb. Vasc. Biol., 2008, vol. 28, pp. 2108–2114.CrossRefGoogle Scholar
  21. 21.
    Butler, A.E, Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., and Butler, P.C., Diabetes, 2003, vol. 52, pp. 102–110.CrossRefGoogle Scholar
  22. 22.
    Drew, B.G., Rye, K.A., Duffy, S.J., Barter, P., and Kingwell, B.A., Nat. Rev. Endocrinol., 2012, vol. 8, pp. 237–245.CrossRefGoogle Scholar
  23. 23.
    Dalla-Riva, J., Stenkula, K.G., Petrlova, J., and Lagerstedt, J.O., J. Lipid Res., 2013, vol. 54, pp. 1275–1282.CrossRefGoogle Scholar
  24. 24.
    Fryirs, M.A., Barter, P.J., Appavoo, M., Tuch, B.E., Tabet, F., Heather, A.K., and Rye, K.A., Arterioscler. Thromb. Vasc. Biol., 2010, vol. 30, pp. 1642–1648.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. F. Usynin
    • 1
  • O. N. Poteryaeva
    • 1
  • G. S. Russkikh
    • 1
  • A. V. Zubova
    • 1
  • K. Yu. Boiko
    • 2
  • L. M. Polyakov
    • 1
  1. 1.Institute of BiochemistryNovosibirskRussia
  2. 2.Novosibirsk State Medical UniversityNovosibirskRussia

Personalised recommendations