Early Changes in Hyppocampal Neurogenesis Induced by Soluble Aβ1-42 Oligomers

  • Yu. K. KomlevaEmail author
  • O. L. Lopatina
  • Ya. V. Gorina
  • A. I. Chernykh
  • A. N. Shuvaev
  • A. B. Salmina


Alzheimer’s disease (AD) is characterized by the loss of neurons, the accumulation of intracellular neurofibrillary tangles and extracellular amyloid plaques in the brain. However, contradicting data exist on differences in neurogenesis at the onset of the disease or before the formation of amyloid plaques. Taking into consideration growing awareness of the importance of the pre-symptomatic phase in neurodegenerative diseases in the context of early diagnosis and pathogenesis, we have analyzed critical periods of adult hippocampal neurogenesis at the early stage under the action of soluble forms of amyloid-beta (Aβ1-42). Using the mouse AD model induced by injection of soluble Aβ oligomers we investigated proliferation, migration, and neuronal cells survival. The injection of Aβ1-42 oligomers caused a decrease in cell proliferation in the mouse hippocampus. Despite preservation of the neuroblast pool in animals treated with Aβ injection, the process of radial migration impaired, and apoptosis increased. Thus, our results demonstrate that Aβ administration impaired critical stages of neurogenesis including progenitor cells, neuroblast migration, integration of immature neurons, and survival of neurons under application of soluble beta-amyloid oligomers. The data obtained indicate the decline in proliferation rate in the subgranular zone, which is accompanied by ectopic differentiation and disturbed migration, producing, apparently, abnormal neurons that have lower survival rates. That could lead to a decrease in the number of mature neurons and in the number of cells in the granular layer of the dentate gyrus.


Alzheimer’s disease neurogenesis subgranular zone cell migration apoptosis stem cells 



  1. 1.
    Selkoe, D.J. and Hardy, J., EMBO Mol. Med., 2016, vol. 8, no. 6, pp. 595–608. doi 10.15252/ emmm.201606210CrossRefGoogle Scholar
  2. 2.
    Holtzman, D.M., Morris, J.C., and Goate, A.M., Science Translational Medicine, 2011, vol. 3, no. 77, 77sr1. doi 10.1126/scitranslmed.3002369Google Scholar
  3. 3.
    Anand, R., Gill, K.D., and Mahdi, A.A., Neuropharmacology, 2014, vol. 76, pt A, pp. 27–50. doi 10.1016/ j.neuropharm.2013.07.004Google Scholar
  4. 4.
    Salmin, V.V., Komleva, Y.K., Kuvacheva, N.V., Morgun, A.V., Khilazheva, E.D., Lopatina, O.L., Pozhilenkova, E.A., Shapovalov, K.A., Uspenskaya, Y.A., and Salmina, A.B., Frontiers Aging Neurosci., 2017, vol. 9, 245. doi 10.3389/fnagi. 2017.00245CrossRefGoogle Scholar
  5. 5.
    Vukovic, J., Borlikova, G.G., Ruitenberg, M.J., Robinson, G.J., Sullivan, R.K., Walker, T.L., and Bart-lett, P.F., J. Neurosci., 2013, vol. 33, no. 15, pp. 6603–6613. doi 10.1523/JNEUROSCI.3064-12.2013CrossRefGoogle Scholar
  6. 6.
    Krezymon, A., Richetin, K., Halley, H., Roybon, L., Lassalle, J.M., Francès, B., Verret, L., and Rampon, C., PLoS One, 2013, vol. 8, no. 9, e76497. doi 10.1371/journal.pone.0076497CrossRefGoogle Scholar
  7. 7.
    Hamilton, A. and Holscher, C., Brain Res., 2012, vol. 1449, pp. 83–93. doi 10.1016/j.brainres.2012.02.015CrossRefGoogle Scholar
  8. 8.
    Yu, Y., He, J., Zhang, Y., Luo, H., Zhu, S., Yang, Y., Zhao, T., Wu, J., Huang, Y., Kong, J., Tan, Q., and Li, X.M., Hippocampus, 2009, vol. 19, no. 12, pp. 1247–1253. doi 10.1002/hipo.20587CrossRefGoogle Scholar
  9. 9.
    Jin, K., Galvan, V, Xie, L., Mao, X.O., Gorosti-za, O.F., Bredesen, D.E., and Greenberg, D.A., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 36, pp. 13363–13367. doi 10.1073/pnas.0403678101CrossRefGoogle Scholar
  10. 10.
    Jin, K., Peel, A.L., Mao, X.O., Xie, L., Cottrell, B.A., Henshall, D.C., and Greenberg, D.A., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 1, pp. 343–347. doi 10.1073/pnas.2634794100CrossRefGoogle Scholar
  11. 11.
    Chernykh, A.I., Komleva, Yu.K., Gorina, Ya.V., Lopatina, O.L., Pashchenko, S.I., and Salmina, A.B., Fund. Klin. Med., 2018, vol. 3, no. 1, pp. 6–15.Google Scholar
  12. 12.
    Sui, Y., Horne, M.K., and Stanić, D., PLoS One, 2012, vol. 7, no. 2, e31549. doi 10.1371/journal.pone.0031549CrossRefGoogle Scholar
  13. 13.
    Zinchuk, V., Zinchuk, O., and Okada, T., Acta Histochem. Cytochem., 2007, vol. 40, no. 4, pp. 101–111. doi 10.1267/ahc.07002CrossRefGoogle Scholar
  14. 14.
    Sun, G.J., Zhou, Y., Stadel, R.P., Moss, J., Yong, J.H., Ito, S., Kawasaki, N.K., Phan, A.T., Oh, J.H., Modak, N., Reed, R.R., Toni, N., Song, H., and Ming, G.L., Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 30, pp. 9484–9489. doi 10.1073/pnas.1508545112CrossRefGoogle Scholar
  15. 15.
    Kim, J.A., Ha, S., Shin, K.Y., Kim, S., Lee, K.J., Chong, Y.H., Chang, K.A., and Suh,Y.H., Cell Death Disease, 2015, vol. 6, e1789. doi 10.1038/cddis.2015.138CrossRefGoogle Scholar
  16. 16.
    Haughey, N.J., Nath, A., Chan, S.L., Borchard, A.C., Rao, M.S., and Mattson, M.P., J. Neurochem., 2002, vol. 83, no. 6, pp. 1509–1524. doi 10.1046/j.1471-4159.2002.01267.xCrossRefGoogle Scholar
  17. 17.
    Walsh, D.M. and Selkoe, D.J., J. Neurochem., 2007, vol. 101, no. 5, pp. 1172–1184. doi 10.1111/j.1471-4159.2006.04426.xCrossRefGoogle Scholar
  18. 18.
    Meilandt, W.J., Cisse, M., Ho, K., Wu, T., Esposito, L.A., Scearce-Levie, K., Cheng, I.H., Yu, G.Q., and Mucke, L., J. Neurosci., 2009, vol. 29, no. 7, pp. 1977–1986. doi 10.1523/JNEUROSCI.2984-08.2009CrossRefGoogle Scholar
  19. 19.
    Dong, H., Goico, B., Martin, M., Csernansky, C.A., Bertchume, A., and Csernansky, J.G., Neuroscience, 2004, vol. 127, no. 3, pp. 601–609. doi 10.1016/j.neuroscience.2004.05.040CrossRefGoogle Scholar
  20. 20.
    Rockenstein, E., Mallory, M., Mante, M., Alford, M., Windisch, M., Moessler, H., and Masliah, E., J. Neural. Transm., 2002, suppl. 62, pp. 327–336.Google Scholar
  21. 21.
    López-Toledano, M.A. and Shelanski, M.L., J. Alzheimers. Dis., 2007, vol. 12, no. 3, pp. 229–240. doi 10.3233/JAD-2007-12304CrossRefGoogle Scholar
  22. 22.
    Tincer, G., Mashkaryan, V., Bhattarai, P., and Kizil, C., Yale J. Biol. Med., 2016, vol. 89, no. 1, pp. 23–35.Google Scholar
  23. 23.
    Donovan, M.H., Yazdani, U., Norris, R.D., Games, D., German, D.C., and Eisch, A.J., J. Comp. Neurol., 2006, vol. 495, no. 1, pp. 70–83. doi 10.1002/ cne.20840CrossRefGoogle Scholar
  24. 24.
    Redwine, J.M., Kosofsky, B., Jacobs, R.E., Games, D., Reilly, J.F., Morrison, J.H., Young, W.G., and Bloom, F.E., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 3, pp. 1381–1386. doi 10.1073/pnas. 242746599CrossRefGoogle Scholar
  25. 25.
    Hu, X., Song, C., Fang, M., and Li, C., Exp. Ther. Med., 2017, vol. 15, no. 2, pp. 1795–1802. doi 10.3892/etm.2017.5620Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. K. Komleva
    • 1
    • 2
    Email author
  • O. L. Lopatina
    • 1
    • 2
  • Ya. V. Gorina
    • 1
    • 2
  • A. I. Chernykh
    • 2
  • A. N. Shuvaev
    • 2
  • A. B. Salmina
    • 1
    • 2
  1. 1.Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Prof. Voino-Yasenetsky Krasnoyarsk State Medical UniversityKrasnoyarskRussia
  2. 2.Research Institute of Molecular Medicine and Pathobiochemistry, Prof. Voino-Yasenetsky Krasnoyarsk State Medical UniversityKrasnoyarskRussia

Personalised recommendations