Advertisement

The study of the surface layer of 3D-matrices for tissue engineering

  • V. S. ChernonosovaEmail author
  • R. I. Kvon
  • E. V. Kiseleva
  • A. O. Stepanova
  • P. P. Laktionov
Article

Abstract

Matrices fabricated by electrospinning from polycaprolactone solutions with human albumin or gelatin to 1,1,1,3,3,3-hexafluoroisopropanol have been investigated. Microstructure of matriх surface was analyzed using scanning electron microscopy. Protein distribution in the surface layer was studied by modification with N-(2-hydroxyethyl)phenazine and X-ray photoelectron spectroscopy. The protein concentration in the surface layer of matrices was up to 12 times higher than in the initial solution, and the lower the protein concentration in the solution, the higher the relative protein content is on the surface of matrices. During incubation of matrices in aqueous solutions protein concentration in the surface layer decreased by less than 10% during the first 30–60 min and remained at this level for a long time (seven days). Treatment with proteinase K resulted in about one-third decrease in protein concentration in the surface layer. Thus, both methods used in this study are applicable for analysis of the surface layer of materials fabricated by electrospinning from mixtures of synthetic and natural polymers; however, X-ray photoelectron spectroscopy appears to be a more informative and convenient method.

Keywords

3D-matrices synthetic and natural polymers electrospinning X-ray photoelectron spectroscopy chemical modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kai, D., Liow, S.S., and Loh, X.J., Mater. Sci. Eng. C Mater. Biol. Appl., 2014, vol. 45, pp. 659–670.CrossRefGoogle Scholar
  2. 2.
    Garg, T., Rath, G., and Goyal, A.K., J. Drug Target., 2015, vol. 23, pp. 202–221.CrossRefGoogle Scholar
  3. 3.
    Vasilets, V.N., Kazbanov, I.V., Efimov, A.E., and Sevast’yanov, V.I., Vestnik Transplantologii i Iskusstvennykh Organov, 2009, vol. 11, pp. 47–53.Google Scholar
  4. 4.
    Antonova, L.V., Matveeva, V.G., and Barabash, L.S., Kompleksnye Problemy Serdechno-sosudistykh Zabolevanii, 2015, vol. 3, pp. 12–22.Google Scholar
  5. 5.
    Ren, X., Feng, Y., Guo, J., Wang, H., Li, Q., Yang, J., Hao, X., Lv, J., Ma, N., and Li, W., Chem. Soc. Rev., 2015, vol. 44, pp. 5680–5742.CrossRefGoogle Scholar
  6. 6.
    Pauly, H.M., Kelly, D.J., Popat, K.C., Trujillo, N.A., Dunne, N.J., McCarthy, H.O., and Haut Donahue, T.L., J. Mech. Behav. Biomed. Mater., 2016, vol. 61, pp. 258–270.CrossRefGoogle Scholar
  7. 7.
    Xie, J., MacEwan, M.R., Li, X., Sakiyama-Elbert, S.E., and Xia, Y., ACS Nano, 2009, vol. 3, pp. 1151–1159.CrossRefGoogle Scholar
  8. 8.
    Castellano, D., Blanes, M., Marco, B., Cerrada, I., Ruiz-Sauri, A., Pelacho, B., Arana, M., Montero, J.A., Cambra, V., Prosper, F., and Sepulveda, P., Stem Cells Dev., 2014, vol. 23, pp. 1479–1490.CrossRefGoogle Scholar
  9. 9.
    Chen, J.P. and Su, C.H., Acta Biomater., 2011, vol. 7, pp. 234–243.CrossRefGoogle Scholar
  10. 10.
    Zander, N.E., Orlicki, J.A., Rawlett, A.M., and Beebe, T.P., Biointerphases, 2010, vol. 5, pp. 149–158.CrossRefGoogle Scholar
  11. 11.
    Singh, S., Wu, B.M., and Dunn, J.C., Biomaterials, 2011, vol. 32, pp. 2059–2069.CrossRefGoogle Scholar
  12. 12.
    Kurpinski, K.T., Stephenson, J.T., Janairo, R.R., Lee, H., and Li, S., Biomaterials, 2010, vol. 31, pp. 3536–3542.CrossRefGoogle Scholar
  13. 13.
    Mattanavee, W., Suwantong, O., Puthong, S., Bunaprasert, T., Hoven, V.P., and Supaphol, P., ACS Appl. Mater. Interfaces, 2009, vol. 1, pp. 1076–1085.CrossRefGoogle Scholar
  14. 14.
    Yoo, H.S., Kim, T.G., and Park, T.G., Adv. Drug Deliv. Rev., 2009, vol. 61, pp. 1033–1042.CrossRefGoogle Scholar
  15. 15.
    Ko, Y.M., Choi, D.Y., Jung, S.C., and Kim, B.H., J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 192–195.CrossRefGoogle Scholar
  16. 16.
    Esfahani, H., Prabhakaran, M.P., Salahi, E., Tayebifard, A., Keyanpour-Rad, M., Rahimipour, M.R., and Ramakrishna, S., J. Colloid. Interface Sci., 2015, vol. 443, pp. 143–152.CrossRefGoogle Scholar
  17. 17.
    Nielsen, S.R., Besenbacher, F., and Chen, M., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 17029–17037.CrossRefGoogle Scholar
  18. 18.
    Lim, J.S., Ki, C.S., Kim, J.W., Lee, K.G., Kang, S.W., Kweon, H.Y., and Park, Y.H., Biopolymers, 2012, vol. 97, pp. 265–275.CrossRefGoogle Scholar
  19. 19.
    Pezeshki-Modaress, M., Mirzadeh, H., and Zandi, M., Mater. Sci. Eng. C Mater. Biol. Appl., 2015, vol. 48, pp. 704–712.CrossRefGoogle Scholar
  20. 20.
    Kim, B.S., Park, K.E., Kim, M.H., You, H.K., Lee, J., and Park, W.H., Int. J. Nanomedicine, 2015, vol. 10, pp. 485–502.Google Scholar
  21. 21.
    Lokhov, S.G., Podyminogin, M.A., Sergeev, D.S., Silnikov, V.N., Kutyavin, I.V., Shishkin, G.V., and Zarytova, V.P., Bioconjug. Chem., 1992, vol. 3, pp. 414–419.CrossRefGoogle Scholar
  22. 22.
    Zander, N.E., Orlicki, J.A., Rawlett, A.M., and Beebe, T.P., ACS Appl. Mater. Interfaces, 2012, vol. 4, pp. 2074–2081.CrossRefGoogle Scholar
  23. 23.
    Moulder, J.F., Stokle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation, 1992.Google Scholar
  24. 24.
    Minghetti, P.P., Ruffner, D.E., Kuang, W.J., Dennison, O.E., Hawkins, J.W., Beattie, W.G., and Dugaiczyk, A., J. Biol. Chem., 1986, vol. 261, pp. 6747–6757.Google Scholar
  25. 25.
    Ferrer, M.L., Duchowicz, R., Carrasco, B., de la Torre, J.G., and Acuna, A.U., Biophys. J., 2001, vol. 80, pp. 2422–2430.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. S. Chernonosova
    • 1
    • 2
    Email author
  • R. I. Kvon
    • 3
  • E. V. Kiseleva
    • 4
  • A. O. Stepanova
    • 1
    • 2
  • P. P. Laktionov
    • 1
    • 2
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Meshalkin Siberian Federal Biomedical Research CenterNovosibirskRussia
  3. 3.Boreskov Institute of CatalysisSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  4. 4.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations