Advertisement

The role of vitamin D3 in the regulation of mineral metabolism in experimental type 1 diabetes

  • D. O. Labudzynskyi
  • O. A. Lisakovska
  • I. A. Shymansky
  • V. M. Riasnyi
  • N. N. Veliky
Article
  • 42 Downloads

Abstract

Experimental streptozotocin type 1 diabetes in mice is characterized by a significant deficiency of vitamin D3, detected by decreased level of serum 25(OH)D3. This vitamin D3 deficiency correlated with impairments of mineral metabolism in bone tissue, indicating the development of secondary osteoporosis. There was a decrease of the mass, length, and diameter (diaphysis, proximal metaphysis) in tibia of diabetic animals as compared to control. Hypocalcemia and hypophosphatemia, as well as increased levels of alkaline phosphatase activity and its isoenzymes were detected in serum of diabetic mice. In the liver of diabetic animals there was an altered expression of isoforms of vitamin D3 25-hydroxylase, CYP27A1 and CYP2R1, which are the major enzymes responsible for cholecalciferol biotransformation into 25(OH)D3, the immediate precursor of hormonally active form of vitamin D3. Administration of vitamin D3 normalized the serum level of 25(OH)D3; this was accompanied by a significant improvement of the state of mineral metabolism compared to the untreated group of diabetic animals. Normalization of the total and ultrafiltration calcium, as well as inorganic phosphate concentration, a decrease in serum alkaline phosphatase activity and the increase in mass, length, and diameter (diaphysis, proximal epimetaphysis) of tibia in diabetic animals treated with cholecalciferol indicated a decrease in bone resorption process. Treatment of diabetic mice with cholecalciferol had a positive effect on expression of hepatic isoforms of vitamin D3 25-hydroxylase (CYP27A1 and CYP2R1). Thus, impairments of mineral metabolism seen in mice with experimental diabetes mellitus are mainly determined by a deficiency of vitamin D3 and its hormonally active forms.

Keywords

vitamin D3 diabetes mellitus secondary osteoporosis bone resorption markers CYP27A1 CYP2R1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sicree, R., Shaw, J., and Zimmet, P., Diabetes. Res. Clin. Pract., 2010, vol. 87, no. 1, pp. 4–14.CrossRefGoogle Scholar
  2. 2.
    Brownlee, M., Diabetes, 2005, vol. 54, pp. 1615–1625.CrossRefGoogle Scholar
  3. 3.
    Rozhinskaya, L.Ya., Sistemnyi osteoporoz: Prakticheskoe rukovodstvo dlya vrachei, (Systemic osteoporosis: A Practical Guide for Physicians) Moscow: Mokeev, 2000.Google Scholar
  4. 4.
    Lecka-Czernik, B., Curr. Osteoporos. Rep., 2010, vol. 8, pp. 178–184.CrossRefGoogle Scholar
  5. 5.
    Shishkin, A.N. and Manulenko, V.V., Vestn. Saint-Petersburg University, 2008, vol. 11, no. 3, pp. 70–79.Google Scholar
  6. 6.
    Maeda, K., Takahashi, N., and Kobayashi, Y., J. Mol. Med. (Berl.), 2013, vol. 91, pp. 15–23.CrossRefGoogle Scholar
  7. 7.
    Apukhovskaya, L.I., Vasilevskaya, V.N., et al., Biotekhnologiya, 2008, vol. 1, no. 2, pp. 59–68.Google Scholar
  8. 8.
    Tseitlin, O.Ya., Vestn. RAMN, 2002, no. 3, pp. 54–57.Google Scholar
  9. 9.
    Liu, J., Hypo Hyperglycemia, 2013, vol. 1, pp. 1–8.Google Scholar
  10. 10.
    Spirichev, V.B., Pediatriya, 2011, vol. 90, no. 6, pp. 113–119.Google Scholar
  11. 11.
    Cooper, J., Smyth, D., Walker, N., Stevens, H., Burren, O., Wallace, C., Greissl, C., Hyppönen, E., Dunger, D., Spector, T., Ouwehand, W., Wang, T., Badenhoop, K., and Todd, J., Diabetes, 2011, vol. 60, pp. 1624–1631.CrossRefGoogle Scholar
  12. 12.
    Ramos-Lopez, E., Brück, P., Jansen, T., Herwig, J., and Badenhoop, K., Diabetes Metab. Res. Rev., 2007, vol. 23, no. 8, pp. 631–636.CrossRefGoogle Scholar
  13. 13.
    Sachin, A. and Shreesh, K., Global J. Pharmacol., 2009, vol. 3, pp. 81–84.Google Scholar
  14. 14.
    Lapach, S.N., Chubenko, A.V., and Babich, P.N., Morion, 2000, p. 320.Google Scholar
  15. 15.
    Bradford, M., Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefGoogle Scholar
  16. 16.
    Harper, D. and Murphy, G., Anal. Biochem., 1991, vol. 192, pp. 59–63.CrossRefGoogle Scholar
  17. 17.
    Dyce, B. and Bessman, S., Arch. Environ. Health., 1973, vol. 27, pp. 112–115.CrossRefGoogle Scholar
  18. 18.
    Wagner, V.K., Putilin, V.M., and Kharabuga, G.G., Vopr. Med. Khim., 1981, vol. 27, pp. 752–754.Google Scholar
  19. 19.
    Gaiko, G.V., Apukhovskaya, L.I., Brusko, A.T., et al., Vestn. Ortoped., Travmatol. Protez., 2005, no. 1 pp. 5–13.Google Scholar
  20. 20.
    Clemens, T. and Karsenty, G., J. Bone Miner. Res., 2011, vol. 26, pp. 677–680.CrossRefGoogle Scholar
  21. 21.
    Levin, M.E., Boisseau, V.C., and Avioli, L.V., New Engl. J. Med., 1976, vol. 294, p. 241.CrossRefGoogle Scholar
  22. 22.
    Hodgson, S. and Watts, N., Endocr. Pract., 2003, vol. 9, pp. 544–564.CrossRefGoogle Scholar
  23. 23.
    Auwerx, J., Dequeker, J., and Bouillon, R., Diabetes, 1988, vol. 37, pp. 8–12.CrossRefGoogle Scholar
  24. 24.
    Balabolkin, M.I., Khasanova, E.R., and Mkrtumyan, A.M., Klin. Med., 1988, no. 3, pp. 86–88.Google Scholar
  25. 25.
    Gogas Yavuz, D., Keskin, L., Kıyıcı, S., Sert, M., Yazıcı, D., Sahin, I., Yüksel, M., Deyneli, O., Aydın, H., Tuncel, E., and Akalın, S., Acta Diabetol., 2011, vol. 48, pp. 329–336.CrossRefGoogle Scholar
  26. 26.
    Hussein, A., Mohamed, R., and Alghobashy, A., Cell Immunol., 2012, vol. 279, pp. 42–45.CrossRefGoogle Scholar
  27. 27.
    Barchetta, J., Carotti, S., and Labbadia, G., Hepatology, 2012, vol. 56, pp. 2180–2187.CrossRefGoogle Scholar
  28. 28.
    Shinkyo, R., Sakaki, T., Kamakura, M., Ohta, M., and Inouye, K., Biochem. Biophys. Res. Commun., 2004, vol. 324, pp. 451–457.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. O. Labudzynskyi
    • 1
  • O. A. Lisakovska
    • 1
  • I. A. Shymansky
    • 1
  • V. M. Riasnyi
    • 1
  • N. N. Veliky
    • 1
  1. 1.Laboratory of Medical BiochemistryPalladin Institute of BiochemistryKyivUkraine

Personalised recommendations