Modeling of the Interaction of Viral Fusion Peptides with the Domains of Liquid-Ordered Phase in a Lipid Membrane

  • V. V. Alexandrova
  • T. R. Galimzyanov
  • R. J. Molotkovsky


Membrane microdomains enriched with sphingomyelin and cholesterol, the so-called rafts, are thicker than the surrounding membrane. To smooth the thickness mismatch, the membrane is deformed, which leads to the formation of a complex asymmetric structure of the raft boundary. The rafts are of great importance in the process of viral infection of the cell: for example, in recent experiments it has been shown that the fusion peptide of human immunodeficiency virus (HIV) tends to be predominantly inserted at the raft boundary, and the effectiveness of the fusion was low in the absence of the rafts. It has been noticed in these studies that such preferential distribution of fusion peptides was not found in the case of influenza virus. In the present paper, we modeled the interaction of fusion peptides with rafts by the methods of elasticity theory of lipid membranes. We have shown that the boundary of the liquid-ordered domains can act as an attractor for the fusion peptides: peptides distribute to the raft boundary and play the role of line-active membrane components. Our model enables to explain the difference of the behavior of different fusion peptides in the presence of rafts in the above mentioned example of the experimental data by different geometry of their insertion into the lipid monolayer. Our results show the fundamental mechanisms by which the geometry of fusion peptide insertion affects their distribution in the lipid membrane.


lipid membranes theory of elasticity of lipid membranes rafts fusion peptides 



The work was supported by the grant of the President of the Russian Federation (project no. MK-1807.2017.4) and by the Russian Foundation for Basic Research (project nos. 17-54-30022 and 17-04-02070).

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387 (6633), 569–572.CrossRefGoogle Scholar
  2. 2.
    Pike L.J. 2009. The challenge of lipid rafts. J. Lipid Res. 50 (Suppl.), S323–S328.CrossRefGoogle Scholar
  3. 3.
    Harder T. 2004. Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr. Opin. Immunol. 16 (3), 353–359.CrossRefGoogle Scholar
  4. 4.
    Baumgart T., Hess S.T., Webb W.W. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425 (6960), 821–824.CrossRefGoogle Scholar
  5. 5.
    Akimov S. A., Kuzmin P. I. 2005. The linear tension of the boundary of raft/background monolayer, calculated with account of transverse bending, tilting, and stretching/compression. Biol. membrany (Rus.). 22 (2), 137–146.Google Scholar
  6. 6.
    Kuzmin P.I., Akimov S.A., Chizmadzhev Y.A., Zimmerberg J., Cohen F.S. 2005. Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys. J. 88 (2), 1120–1133.CrossRefGoogle Scholar
  7. 7.
    Elson E.L., Fried E., Dolbow J.E., Genin G.M. 2010. Phase separation in biological membranes: Integration of theory and experiment. Annu. Rev. Biophys. 39, 207–226.CrossRefGoogle Scholar
  8. 8.
    Lawrence J.C., Saslowsky D.E., Edwardson J.M., Henderson R.M. 2003. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy. Biophys. J. 84 (3), 1827–1832.CrossRefGoogle Scholar
  9. 9.
    Akimov S.A., Kuzmin P.I., Zimmerberg J., Cohen F.S. 2007. Lateral tension increases the line tension between two domains in a lipid bilayer membrane. Phys. Rev. E. 75 (1), 011919.CrossRefGoogle Scholar
  10. 10.
    Galimzyanov T.R., Molotkovsky R.J., Kuzmin P.I., Akimov S.A. 2011. Stabilization of bilayer structure of raft due to elastic deformations of membrane. Biochemistry (Moscow) Suppl. Ser. A Membr. Cell. Biol. 5 (3), 286–292.Google Scholar
  11. 11.
    Galimzyanov T.R., Molotkovsky R.J., Bozdaganyan M.E., Cohen F.S., Pohl P., Akimov S.A. 2015. Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains. Phys. Rev. Lett. 115 (8), 088101.CrossRefGoogle Scholar
  12. 12.
    Galimzyanov T.R., Molotkovsky R.J., Cohen F.S., Pohl P., Akimov S.A. 2016. Galimzyanov et al. Reply. Phys. Rev. Lett. 116 (7), 079802.Google Scholar
  13. 13.
    Perlmutter J.D., Sachs J.N. 2011. Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J. Am. Chem. Soc. 133 (17), 6563–6577.CrossRefGoogle Scholar
  14. 14.
    Fujimoto T., Parmryd I. 2017. Interleaflet coupling, pinning, and leaflet asymmetry—major players in plasma membrane nanodomain formation. Front. Cell Dev. Biol. 4, 155.CrossRefGoogle Scholar
  15. 15.
    Staneva G., Osipenko D.S., Galimzyanov T.R., Pavlov K.V., Akimov S.A. 2016. Metabolic precursor of cholesterol causes formation of chained aggregates of liquid-ordered domains. Langmuir. 32 (6), 1591–1600.CrossRefGoogle Scholar
  16. 16.
    Galimzyanov T.R., Lyushnyak A.S., Aleksandrova V.V., Shilova L.A., Mikhalyov I.I., Molotkovskaya I.M., Akimov S.A., Batishchev, O. V. 2017. Line activity of ganglioside gm1 regulates the raft size distribution in a cholesterol-dependent manner. Langmuir. 33 (14), 3517–3524.CrossRefGoogle Scholar
  17. 17.
    Yang S.T., Kiessling V., Simmons J.A., White J.M., Tamm L.K. 2015. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat. Chem. Biol. 11 (6), 424–431.CrossRefGoogle Scholar
  18. 18.
    Yang S.T., Kreutzberger A.J., Kiessling V., Ganser-Pornillos B.K., White J.M., Tamm L.K. 2017. HIV virions sense plasma membrane heterogeneity for cell entry. Sci. Adv. 3 (6), e1700338.CrossRefGoogle Scholar
  19. 19.
    Harrison S.C. 2008. Viral membrane fusion. Nat. Struct. Mol. Biol. 15 (7), 690–698.CrossRefGoogle Scholar
  20. 20.
    Jahn R., Lang T. Südhof T.C. 2003. Membrane fusion. Cell. 112 (4), 519–533.CrossRefGoogle Scholar
  21. 21.
    Martens S., McMahon H.T. 2008. Mechanisms of membrane fusion: Disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9 (7), 543–556.CrossRefGoogle Scholar
  22. 22.
    Lai A.L., Tamm L.K. 2010. Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion. J. Biol. Chem. 285 (48), 37467–37475.CrossRefGoogle Scholar
  23. 23.
    Molotkovsky R.J., Galimzyanov T.R., Jiménez-Munguía I., Pavlov K.V., Batishchev O.V., Akimov S.A. 2017. Switching between successful and dead-end intermediates in membrane fusion. Int. J. Mol. Sci. 18 (12), E2598.CrossRefGoogle Scholar
  24. 24.
    Qiang W., Sun Y., Weliky D.P. 2009. A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide. Proc. Natl. Acad. Sci. USA. 106 (36), 15314–15319.CrossRefGoogle Scholar
  25. 25.
    Risselada H.J., Marelli G., Fuhrmans M., Smirnova Y.G., Grubmüller H., Marrink S.J., Müller M. 2012. Line-tension controlled mechanism for influenza fusion. PLoS One. 7 (6), e38302.CrossRefGoogle Scholar
  26. 26.
    Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E. 3 (4), 323–335.CrossRefGoogle Scholar
  27. 27.
    Galimzyanov T.R., Akimov S.A. 2011. Phase separation in lipid membranes induced by the elastic properties of components. JETP Lett. 93 (8), 463–469.CrossRefGoogle Scholar
  28. 28.
    Galimzyanov T.R., Molotkovsky R.J., Kheyfets B.B., Akimov S.A. 2013. Energy of the interaction between membrane lipid domains calculated from splay and tilt deformations. JETP Lett. 96 (10), 681–686.CrossRefGoogle Scholar
  29. 29.
    Akimov S.A., Molotkovsky R.J., Galimzyanov T.R., Radaev A.V., Shilova L.A., Kuzmin P.I., Batishchev O.V., Voronina G.F., Chizmadzhev Y.A. 2014. Model of membrane fusion: Continuous transition to fusion pore with regard of hydrophobic and hydration interactions. Biochemistry (Moscow) Suppl. Ser. A Membr. Cell. Biol. 8 (2), 153–161.Google Scholar
  30. 30.
    Galimzyanov T.R., Kuzmin P.I., Pohl P. Akimov S.A. 2016. Elastic deformations of bolalipid membranes. Soft Matt. 12 (8), 2357–2364.CrossRefGoogle Scholar
  31. 31.
    Akimov S.A., Alexandrova V.V., Galimzyanov T.R., Batishchev O.V. 2017. Interaction of amphipatic peptides mediated by elastic deformations of the membrane. Biol. membrany (Rus.). 34 (3), 162–173.Google Scholar
  32. 32.
    Osipenko D.S., Galimzyanov T.R., Akimov S.A. 2016. Lateral redistribution of transmembrane proteins and liquid-ordered domains in lipid membranes with inhomogeneous curvature. Biochemistry (Moscow) Suppl. Ser. A Membr. Cell. Biol. 10 (4), 259–268.Google Scholar
  33. 33.
    Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71 (5), 2623–2632.CrossRefGoogle Scholar
  34. 34.
    Lai A.L., Park H., White J.M., Tamm L.K. 2006. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity. J. Biol. Chem. 281 (9), 5760–5770.CrossRefGoogle Scholar
  35. 35.
    Worch R., Krupa J., Filipek A., Szymaniec A., Setny P. 2017. Three conserved C-terminal residues of influenza fusion peptide alter its behavior at the membrane interface. Biochim. Biophys. Acta. 1861 (2), 97–105.Google Scholar
  36. 36.
    Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79 (1), 328–339.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Alexandrova
    • 1
    • 2
  • T. R. Galimzyanov
    • 1
    • 3
  • R. J. Molotkovsky
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Physics Department, Moscow State UniversityMoscowRussia
  3. 3.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations