Analysis of Correlations between the Indexes of Light-Dependent Reactions of Photosynthesis and the Photochemical Reflectance Index (PRI) in Pea Leaves under Short-Term Illumination

  • V. S. SukhovEmail author
  • E. N. Gromova
  • E. M. Sukhova
  • L. M. Surova
  • V. N. Nerush
  • V. A. Vodeneev


The photochemical reflectance index (PRI) is related to the conversion of violoxanthin into zeaxanthin in the xanthophyll cycle and thereby reflects the activity of electron-transport chain in chloroplasts. The PRI is recorded by a relatively simple and non-invasive technique; therefore it can be used in a perspective approach for the remote monitoring of photosynthetic processes and detection of photosynthetic stress. However, correlation coefficients between PRI and photosynthetic parameters vary widely in different studies; one of the possible causes of such variability under natural conditions may be the changes in illumination and the development of transient processes in the photosynthetic apparatus. In the present study, the influence of the duration of illumination (a minute interval) on the relationship between parameters of light-dependent reactions of photosynthesis and the PRI has been investigated. The photosynthetic parameters and PRI were determined in pea leaves. A high negative correlation has been found between changes of PRI induced by illumination and changes in the quantum yields of the photochemical reactions of photosystems I and II; the PRI changes did not correlate with changes of non-photochemical quenching. There was a positive correlation between the quantum yields of photochemical reactions and PRI averaged over the entire time range and a negative correlation in the case of non-photochemical quenching and PRI. The absolute value of the correlation coefficient of PRI with the parameters of the light-dependent reactions of photosynthesis increased with increasing duration of illumination. Thus, the correlation of PRI with the parameters of the light-dependent reactions of photosynthesis in a pea leaf may depend on the duration of illumination, at least in a minute interval.


quantum yield non-photochemical fluorescence quenching photosystem I photosystem II photochemical reflectance index 



The work was supported by the Russian Science Foundation (project no. 17-76-20 032).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Muller P., Li X.-P., Niyogi K.K. 2001. Non-photochemical quenching. A response to excess light energy. Plant. Physiol. 125, 1558–1566.CrossRefGoogle Scholar
  2. 2.
    Ruban A.V. 2015. Evolution under the sun: Optimizing light harvesting in photosynthesis. J. Exp. Bot. 66, 7–23.CrossRefGoogle Scholar
  3. 3.
    Gamon J.A., Peñuelas J., Field C.B. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44.CrossRefGoogle Scholar
  4. 4.
    Garbulsky M.F., Peñuelas J., Gamon J., Inoue Y., Filella I. 2011. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis. Remote Sens. Environ. 115, 281–297.CrossRefGoogle Scholar
  5. 5.
    Zhang C., Filella I., Garbulsky M.F., Peñuelas J. 2016. Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies. Remote Sens. 8, 677.CrossRefGoogle Scholar
  6. 6.
    Evain S., Flexas J., Moya I. 2004. A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sens. Environ. 91, 175–185.CrossRefGoogle Scholar
  7. 7.
    Porcar-Castell A., Garcia-Plazaola J.I., Nichol C.J., Kolari P., Olascoaga B., Kuusinen N., Fernández-Marín B., Pulkkinen M., Juurola E., Nikinmaa E. 2012. Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia. 170, 313–323.CrossRefGoogle Scholar
  8. 8.
    Liu L., Zhang Y., Jiao Q., Peng D. 2013. Assessing photosynthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index. Int. J. Remote Sens. 34, 4264–4280.CrossRefGoogle Scholar
  9. 9.
    Sarlikioti V., Driever S.M., Marcelis L.F.M. 2010. Photochemical reflectance index as a mean of monitoring early water stress. Ann. Appl. Biol. 157, 81–89.CrossRefGoogle Scholar
  10. 10.
    Moran M.S., Inoue Y., Barnes E.M. 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 61, 319–346.CrossRefGoogle Scholar
  11. 11.
    Armbruster U., Carrillo L.R., Venema K., Pavlovic L., Schmidtmann E., Kornfeld A., Jahns P., Berry J.A., Kramer D.M., Jonikas M.C. 2014. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat. Commun. 5, 5439.CrossRefGoogle Scholar
  12. 12.
    Davis G.A., Rutherford A.W., Kramer D.M. 2017. Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Δψ and ΔpH. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160381.CrossRefGoogle Scholar
  13. 13.
    Sukhov V., Surova L., Sherstneva O., Vodeneev V. 2014. Influence of variation potential on resistance of the photosynthetic machinery to heating in pea. Physiol. Plant., 152, 773–783.CrossRefGoogle Scholar
  14. 14.
    Sherstneva O. N., Surova L. M., Vodeneev V. A., Plotnikova Yu. I., Bushueva A. V., Sukhov V. S. 2015. The role of intracellular and extracellular protons in the induction of photosynthetic response by the variable potential in pea seedlings. Biol. membrany (Rus.). 32, 446–454.Google Scholar
  15. 15.
    Sukhov V., Surova L., Sherstneva O., Katicheva L., Vodeneev V. 2015. Variation potential influence on photosynthetic cyclic electron flow in pea. Front. Plant. Sci. 5, 766.CrossRefGoogle Scholar
  16. 16.
    Sukhov V., Surova L., Sherstneva O., Bushueva A., Vodeneev V. 2015. Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. Funct. Plant. Biol. 42, 727–736.CrossRefGoogle Scholar
  17. 17.
    Sukhov V., Gaspirovich V., Mysyagin S., Vodeneev V. 2017. High-temperature tolerance of photosynthesis can be linked to local electrical responses in leaves of pea. Front. Physiol. 8, 763.CrossRefGoogle Scholar
  18. 18.
    Klughammer C., Schreiber U. 2008. Saturation pulse method for assessment of energy conversion in PS I. PAM Application Notes, 1, 11–14.Google Scholar
  19. 19.
    Maxwell K., Johnson G.N. 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51, 659–668.CrossRefGoogle Scholar
  20. 20.
    Osório J., Osório M.L., Romano A. 2012. Reflectance indices as nondestructive indicators of the physiological status of Ceratonia siliqua seedlings under varying moisture and temperature regimes. Funct. Plant. Biol. 39, 588–597.CrossRefGoogle Scholar
  21. 21.
    Zinnert J. C., Nelson J.D., Hoffman A.M. 2012. Effects of salinity on physiological responses and the photochemical reflectance index in two co-occurring coastal shrubs. Plant Soil. 354, 45–55.CrossRefGoogle Scholar
  22. 22.
    Shrestha S., Brueck H., Asch F. 2012. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. J. Photochem. Photobiol. B. 113, 7–13.CrossRefGoogle Scholar
  23. 23.
    Kramer D.M., Cruz J.A., Kanazawa A. 2003. Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci. 8, 27–32.CrossRefGoogle Scholar
  24. 24.
    Alte F., Stengel A., Benz J.P., Petersen E., Soll J., Groll M., Bӧlter B. 2010. Ferredoxin: NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH dependent manner. Proc. Natl. Acad. Sci. USA. 107, 19 260–19 265.CrossRefGoogle Scholar
  25. 25.
    Benz J.P., Stengel A., Lintala M., Lee Y.H., Weber A., Philippar K., Gügel I.L., Kaieda S., Ikegami T., Mulo P., Soll J., Bӧlter B. 2010. Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell. 21, 3965–3983.CrossRefGoogle Scholar
  26. 26.
    Bukhov N. G. 2004. Dynamic light regulation of photosynthesis. Fisiologiya rasteniy (Rus.). 51, 825–837.Google Scholar
  27. 27.
    Filella I., Porcar-Castell A., Munné-Bosch S., Bäck J., Garbulsky M.F., Peñuelas J. 2009. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455.CrossRefGoogle Scholar
  28. 28.
    Zaks J., Amarnath K., Kramer D.M., Niyogi K.K., Fleming G.R. 2012. A kinetic model of rapidly reversible nonphotochemical quenching. Proc. Natl. Acad. Sci. USA. 109, 15 757–15 762.CrossRefGoogle Scholar
  29. 29.
    Hisabori T., Konno H., Ichimura H., Strotmann H., Bald D. 2002. Molecular devices of chloroplast F1-ATP synthase for the regulation. Biochim. Biophys. Acta. 1555, 140–146.CrossRefGoogle Scholar
  30. 30.
    Jahns P., Wehner A., Paulsen H., Hobe S. 2001. De-epoxidation of violaxanthin after reconstitution into different carotenoid binding sites of light-harvesting complex II. J. Biol. Chem. 276, 22154–22159.CrossRefGoogle Scholar
  31. 31.
    Jahns P., Latowski D., Strzalka K. 2009. Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochim. Biophys. Acta. 1787, 3–14.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. S. Sukhov
    • 1
    Email author
  • E. N. Gromova
    • 1
  • E. M. Sukhova
    • 1
  • L. M. Surova
    • 1
  • V. N. Nerush
    • 1
  • V. A. Vodeneev
    • 1
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations