Effects of Abiotic Stresses on the Content of Glycoglycerolipids in the Vacuolar Membrane of Red Beetroot

  • V. V. Gurina
  • N. V. OzolinaEmail author
  • I. S. Nesterkina
  • V. N. Nurminsky


Glycoglycerolipids (GL) of the red beet vacuolar membrane under osmotic and oxidative stresses have been investigated. Variations of the GL content under stress conditions might be indicators of an important role of these compounds in protective mechanisms. Changes of the GL levels and the digalactosyldiacylglycerols/monogalactosyldiacylglycerol (DGDG/MGDG) ratio in the vacuolar membrane under hypoosmotic and oxidative stresses corresponded mainly to those observed in other cell membranes under majority of stresses studied, namely, the ratio increased that contributed to membrane stabilization. The changes of the GL content of vacuolar membrane caused by hyperosmotic stress notably differed. The DGDG content and DGDG/MGDG ratio significantly decreased. These alterations did not necessarily result in a decrease in the membrane stability under hyperosmotic stress, since the content of MGDG involved in the formation of a hexagonal structure and capable of destabilizing lipid bilayer also decreased. The changes of the GL level in the vacuolar membrane under hyperosmotic stress can be due to an increased degradation or reduced biosynthesis of GL; these changes may represent yet another defense mechanism of a plant cell against stresses.


vacuolar membrane glycoglycerolipids abiotic stress 



The work was performed on the equipment of the CSU “Bioanalytics” of the Siberian Institute of plant physiology and biochemistry SB RAS (Irkutsk).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Kim K., Portis AR. 2005. Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol. 46 (3), 522–530.CrossRefGoogle Scholar
  2. 2.
    Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.-E., Rajashekar C.B., Williams T.D., Wang X. 2002. Profiling membrane lipids in plant stress responses. J. Biol. Chem. 277, 31 994–32 002.CrossRefGoogle Scholar
  3. 3.
    Rozentsvet O. A., Nesterov V. N., Sinyutina N. F. 2010. The changes in the composition of cell membrane lipids and subcellular fractions of the freshwater plant Hydrilla verticillata (L. f). Royle under the influence of heavy metals. Samarskaya Luka: Problemy regionalnoy i globalnoy ekologii (Rus.). 19 (1), 61–77.Google Scholar
  4. 4.
    Zhou Y., Pan X., Qu H., Underhill S.J. 2014. Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development. J. Membr. Biol. 247, 429–439.CrossRefGoogle Scholar
  5. 5.
    Ozolina N.V., Gurina V.V., Nesterkina I.S., Dudareva L.V., Katyshev A.I., Nurminsky V.N. 2017. Fatty acid composition of total lipids of the vacuolar membrane under abiotic stress. Biol. membrany. (Rus.). 34 (1), 63–69.Google Scholar
  6. 6.
    Salyaev R.K., Kuzevanov V.Ya., Khaptagaev S.B., Kopytchuk V.N. 1981. Isolation and purification of vacuoles and vacuolar membranes from plant cells. Fiziologiya rasteniy (Rus.). 28, 1295–1305.Google Scholar
  7. 7.
    Ozolina N.V., Nesterkina I.S., Kolesnikova E.V., Salyaev R.K., Nurminsky V.N., Rakevich A.L., Martynovich E.F., Chernyshov M. Yu. 2013. Tonoplast of Beta vulgaris L. contains detergent-resistant membrane micridomains. Planta. 237, 859–871.CrossRefGoogle Scholar
  8. 8.
    Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.CrossRefGoogle Scholar
  9. 9.
    Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28 (3), 350–356.CrossRefGoogle Scholar
  10. 10.
    Roughan P.G., Batt R.D. 1986. Quantative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal. Biochem. 22, 74–88.CrossRefGoogle Scholar
  11. 11.
    Wu J., Seliskar D.M., Gallagher J.L. 2005. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Amer. J. Botany. 92, 852–858.CrossRefGoogle Scholar
  12. 12.
    Omoto E., Iwasaki Y., Miyaki H., Taniguchi M. 2016. Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol. Plant. 157 (1), 13–23.CrossRefGoogle Scholar
  13. 13.
    Bohn M., Luthje S., Sperling P., Heinz E., Dorffling K. 2007. Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J. Plant Physiol. 164, 146–156.CrossRefGoogle Scholar
  14. 14.
    Narayanan S., Tamura P.J., Roth M.R., Prasad P.V., Welti R. 2016. Wheat leaf lipid during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 39 (4), 787–803.CrossRefGoogle Scholar
  15. 15.
    Pham-Thi A.-T., Borrel-Flood C., Veira da Silva J., Justin A.M., Mazliak P. 1987. Effects of drought on [1-14C]-oleic and [1-14C]-linoleic acid desaturation in cotton leaves. Physiol. Plant. 69, 147–150.CrossRefGoogle Scholar
  16. 16.
    Su K., Bremer D.J., Jeannotte R., Welti R., Yang C. 2009. Membrane lipid composition and heat tolerance in cool-season turgrasses, including a hybrid bluegrass. J. Amer. Hort. Sci. 134, 511–520.CrossRefGoogle Scholar
  17. 17.
    Gigon A., Matos A.-R., Laffray D., Zuily-Fodil Y. Pham-Thi A.-T. 2004. Effect of drought on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann. Bot. 94, 345–351.CrossRefGoogle Scholar
  18. 18.
    Yeagle P.L. 1989. Lipid regulation of cell membrane structure and function. FASEB J. 3, 1833–1842.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Gurina
    • 1
  • N. V. Ozolina
    • 1
    Email author
  • I. S. Nesterkina
    • 1
  • V. N. Nurminsky
    • 1
  1. 1.Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations