Anticancer Activity of Spirocyclic Hydroxamic Acids (Derivatives of 1-Hydroxy-1,4,8-Triazaspiro[4,5]Decan-2-One), Histone Deacetylase Inhibitors

  • N. P. AkentievaEmail author
  • A. R. Gizatullin
  • S. A. Goncharova
  • T. A. Raevskaya
  • N. S. Goryachev
  • N. I. Shkondina
  • T. R. Prichodchenko
  • I. V. Vystorop
  • S. S. Shushanov


The effect of 10 racemic spirocyclic hydroxamic acids (CHA 1–10, derivatives of 1-hydroxy-1,4,8-triazaspiro[4,5]decan-2-one), containing pharmacophore imidazolidinone and piperidine fragments with different substituents, on the activity of enzyme histone deacetylase (HDAC) was studied. It was shown that CHA (1–10) inhibit HDAC activity in cultured breast cancer cells. It was shown that CHA (1–10) as a part of polychemotherapy with cisplatin and cyclophosphane have a pronounced chemosensitizing antitumor activity in vivo. The results obtained on tumor models in vivo showed that CHA can be considered as potential medicinal components of tumor polychemotherapy.


cyclic hydroxamic acids histone deacetylase inhibitors 



Authors thank S.V. Blokhina, head of the nursery and vivarium of the IPCP RAS, for raising animals and methodological assistance. The work was supported by the Russian Foundation for Basic Research (project no. 13-03-01142 3.2). The work was performed as a subject of the State Program, State Registration nos. 0089-2014-0038 and 01201361874.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Zaridze D.G. 2004. Kantserogenez (Cancerogenesis). Moscow: Medicine, p. 29–85.Google Scholar
  2. 2.
    Simon S.M., Schindler M. 1994. Cell biological mechanisms of multidrug resistance in tumors. Proc. Natl. Acad. Sci. USA. 91, 3497–3504.CrossRefGoogle Scholar
  3. 3.
    Sverdlov E.D. 2009. Vzgliad na zhizn cherez okno genoma (A look at life through the window of the genom). Moscow: URSS Publishing group. Vol. 1.Google Scholar
  4. 4.
    Kanwal R., Gupta K., Gupta S. 2015. Cancer epigenetics: An introduction. Methods Mol. Biol. 1238, 3–25.CrossRefGoogle Scholar
  5. 5.
    Dong G., Chen W., Wang X., Yang X., Xu T., Wang P., Zhang W., Rao Y., Miao C., Sheng C. 2017. Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: Discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylase (HDAC) dual inhibitors. J. Med. Chem. 60, 7965–7983.CrossRefGoogle Scholar
  6. 6.
    Marks P.A., Xu W.S. 2009. Histone deacetylase inhibitors: Potential in cancer therapy. J. Cell. Biochem. 107, 600–608.CrossRefGoogle Scholar
  7. 7.
    Haberland M., Montgomery R.L., Olson E.N. 2009. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 10, 32–42.CrossRefGoogle Scholar
  8. 8.
    Yang X.-J., Seto E. 2008. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206–218.CrossRefGoogle Scholar
  9. 9.
    Li G., Margueron R., Hu G., Stokes D., Wang Y.H., Reinberg D. 2010. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol. Cell. 38, 41–53.CrossRefGoogle Scholar
  10. 10.
    Perri F., Longo F., Giuliano M., Sabbatino F., Favia G., Ionna F., Addeo R., Scarpati G.D.V., Di Lorenzo G., Pisconti S. 2017. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit. Rev. Oncol. Hematol. 111, 166–172.CrossRefGoogle Scholar
  11. 11.
    Halkidou K., Gaughan L., Cook S., Leung H.Y., Neal D.E., Robson C.N. 2004. Upregulation and nuclear recruitment of HDAC-l in hormone refractory prostate cancer. Prostate. 59, 177–189.CrossRefGoogle Scholar
  12. 12.
    Choi J.-H., Kwon H.J., Yoon B.-I., Kim J.-H., Han S.U., Joo H.J., Kim D.-Y. 2001. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res. 92, 1300–1304.CrossRefGoogle Scholar
  13. 13.
    Zhang Z., Yamashita H., Toyama T., Sugiura H., Ando Y., Mita K., Hamaguchi M., Hara Y., Kobayashi S., Iwase H. 2005. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res. Treat. 94, 11–16.CrossRefGoogle Scholar
  14. 14.
    Song J., Noh J.H., Lee J.H., Eun J.W., Ahn Y.M., Kim S.Y., Lee S.H., Park W.S., Yoo, N.J., Lee J.Y. 2005. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 113, 264–268.CrossRefGoogle Scholar
  15. 15.
    Zhu P., Martin E., Mengwasser J., Schlag P., Janssen K.P., Guttlicher M. 2004. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 5, 455–463.CrossRefGoogle Scholar
  16. 16.
    Wilson A.J., Byun D.S., Popova N., Murray L.B., L’Italien K., Sowa Y., Arango D., Velcich A., Augenlicht L.H., Mariadason J.M. 2006. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 281, 13 548–13 558.CrossRefGoogle Scholar
  17. 17.
    Bolden J.E., Peart M.M.J., Johnstone R.R.W. 2006. Anticancer activities of histone deacetylase inhibitors. Nat. Rev.Drug Discov. 5, 769–784.CrossRefGoogle Scholar
  18. 18.
    Nakagawa M., Oda Y., Eguchi T., Aishima S.-I., Yao T., Hosoi F., Basaki Y., Ono M., Kuwano M., Tanaka M. 2007. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep. 18, 769–774.Google Scholar
  19. 19.
    Oehme I., Deubzer H.E., Wegener D., Pickert D., Linke J.P., Hero B., Kopp-Schneider A., Westermann F., Ulrich S.M., von Deimling A. 2009. Histone deacety-lase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res. 15, 91–99.CrossRefGoogle Scholar
  20. 20.
    Miller T.A., Witter D.J., Belvedere S. 2003. Histone deacetylase Inhibitors. J. Med. Chem. 46, 5097–5116.CrossRefGoogle Scholar
  21. 21.
    Finnin M.S., Donigian J.R., Cohen A., Richon V.M., Rifkind R.A., Marks P.A., Breslow R., Pavletich N.P. 1999. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 401, 188–193.CrossRefGoogle Scholar
  22. 22.
    Mai A., Massa S., Rotili D., Cerbara I., Valente S., Pezzi R., Simeoni S., Ragno R. 2005. Histone deacetylation in epigenetics: An attractive target for anticancer therapy. Med. Res. Rev. 25, 261–209.CrossRefGoogle Scholar
  23. 23.
    Giannini G., Cabri W., Fattorusso C., Rodriquez M. 2012. Histone deacetylase inhibitors in the treatment of cancer: Overview and perspectives. Future Med. Chem. 4, 1439–1460.CrossRefGoogle Scholar
  24. 24.
    Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. 2017. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int. J. Cardiol. 227, 66–82.CrossRefGoogle Scholar
  25. 25.
    Qin H.T., Li H.Q., Liu F. 2016. Selective histone deacetylase small molecule inhibitors: Recent progress and perspectives. Expert. Opin. Ther. Pat. 29, 1–15.Google Scholar
  26. 26.
    Whittaker S.J., Demierre M.F., Kim E.J., Rook A.H., Lerner A., Duvic M., Scarisbrick J., Reddy S., Robak T., Becker J.C., Samtsov A., McCulloch W., Kim Y.H. 2010. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 4485–4491.CrossRefGoogle Scholar
  27. 27.
    De Ruijter A.J., van Gennip A.H., Caron H.N., Kemp S., van Kuilenburg A.B. 2003. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 370, 737–749.CrossRefGoogle Scholar
  28. 28.
    Khan O., La Thangue N.B. 2008. Drug insight: Histone deacetylase inhibitor-based therapies for cutaneous T-cell lymphomas. Nat. Clin. Pract. Oncol. 5, 714–726.CrossRefGoogle Scholar
  29. 29.
    Rodríguez-Paredes M., Esteller M. 2011. A combined epigenetic therapy equals the efficacy of conventional chemotherapy in refractory advanced non-small cell lung cancer. Cancer Discov. 1, 557–559.CrossRefGoogle Scholar
  30. 30.
    Cameron E., Bachman K., Myohanen S., Herman J. 1999. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107.CrossRefGoogle Scholar
  31. 31.
    Vystorop I.V., Konovalova N.P., Nelyubina Yu.V., Varfolomeev V.N., Fedorov B.S., Sashenkova T.E., Berseneva E.N., Lyssenko K.A., Kostyanovsky R.G. 2010. Cyclic hydroxamic acids derived from alpha-amino acids. 1. Regioselective synthesis, structure, NO-donor and antimetastatic activities of spirobicyclic hydroxamic acids derived from glycine and DL-alanine. Russ. Chem. Bull. (Rus.). 59, 127–135.CrossRefGoogle Scholar
  32. 32.
    Konovalova N.P., Vystorop I.V., Sashenkova I.E., Klimanova E.N., Mischenko D.V., Allayarova U.Yu., Goncharov S.A., Raevskaya A.T., Yakushenko T.N., Chernyak A.V. 2013. Cyclic hydroxamic acid as chemosensitizing cytostatic therapy. Problems Oncology (Rus.). 59, 620–622Google Scholar
  33. 33.
    Vystorop I.V., Nelyubina Y.V., Voznesensky V.N., Sun W.H., Lodygina V.P., Lyssenko K.A., Kostya-novsky R.G. 2010. General regioselective synthesis and crystal structure of racemic 5-substituted 2,2-dimethyl-3-hydroxyimidazolidin-4-ones. Mendeleev Communications. 20, 106–108.CrossRefGoogle Scholar
  34. 34.
    Vystorop I.V., Konovalova N.P., Nelyubina Y.V., Varfolomeev V.N., Fedorov B.S., Sashenkova I.E., Berseneva E.N., Lysenko K.A., Kostyanovsky R.G. 2010. Cyclic hydroxamic acids based on alpha-amino acids. Regioselective synthesis, structure, NO-donor and antimetastatic activity of spirobicyclic hydroxamic acids based on glycine and DL-alanine. Russ. Chem. Bull., Chem. Series. 1, 127–134.Google Scholar
  35. 35.
    Mironov A.N., Bunatyan N.D. 2012. Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvenykh sredstv. Chast 1 (Guidelines for pre-clinical trials of drugs. Part I). Moscow: Grif and Co.Google Scholar
  36. 36.
    Treshchaina E.M., Zhukova O.S., Gerasimova G.K., Andronova N.V., Garin A.M. 2005. Guidelines for the study of antitumor activity of pharmacological substances. In: Metodicheskiye ukazaniya po izucheniyu protivoopukholevoy aktivnosti farmakologicheskikh veshchestv (Guidelines for the study anticancer activity of pharmacological substances). Ed. Gabriev R.U. Moscow: Medicine, p. 2–48.Google Scholar
  37. 37.
    Goncharova S.A., Demidova N.S., Shiryaeva O.A., Shevtsova V.N., Konovalova N.P. 1987. The feature of anthracycline-resistant strains of leukemia P388. Exp. Onkol. (Ukr.). 9, 42–47.Google Scholar
  38. 38.
    Demidova N.S., Goncharova S.A., Chernova O.B., Kopnin B.P., Gudkov A.V. 1987. Amplification of genes in the leukemic cells of mice in vivo with acquired multidrug resistance. Genetika (Rus.). 23 (10), 1797–1806.Google Scholar
  39. 39.
    Demidova N.S., Chernova O.B., Siyanova E.Y., Goncharova S.A., Kopnin B.P. 1991. Newly formed chromosome like structures in independent mouse P388 sublines with developed in vivo mdr1 gene amplification. Somatic Cell Mol. Genet. 17, 581–590.CrossRefGoogle Scholar
  40. 40.
    Belenky M.L. 1963. Elementy kolichestvennoy otsenky farmakologicheskogo effekta. (Elements of quantitative evaluation of pharmacological effect). 2d edition. Leningrad: Medgiz.Google Scholar
  41. 41.
    Eckschlager T., Plch J., Stiborova M., Hrabeta J. 2017. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 18, 2–25.CrossRefGoogle Scholar
  42. 42.
    Williams M.J., Singleton W.G., Lowis S.P., Malik K., Kurian K.M. 2017. Therapeutic targeting of histone modifications in adult and pediatric high-grade glioma. Front Oncol. 7, 45–50.CrossRefGoogle Scholar
  43. 43.
    West H. 2014. Nivolumab as first line monotherapy for advanced non-small cell lung cancer: Could we replace first line chemotherapy with immunotherapy? Transl. Lung Cancer Res. 3, 400–402.Google Scholar
  44. 44.
    Ceccacci E., Minucci S. 2016. Inhibition of histone deacetylases in cancer therapy: Lessons from leukemia. Br. J. Cancer. 114, 605–611.CrossRefGoogle Scholar
  45. 45.
    Hřebačkova J., Poljakova J., Eckschlager T., Hraběta J., Prochazka P., Smutny S., Stiborova M. 2009. Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells. Interdisc Toxicol. 2, 205–210.CrossRefGoogle Scholar
  46. 46.
    Goncharova S.A., Vystorop I.V., Raevskaya T.A., Kono-valova N.P. 2017. The effectiveness of cyclic hydroxamic acid CHA-5 against drug-resistant P388 leukemia strains. Bull. Exp. Biol. Med. 163, 385–388.CrossRefGoogle Scholar
  47. 47.
    Neganova M.E., Mishchenko D.V., Serkova T.P., Vystorop I.V., Shevtsova E.F. 2016. Biological activity of spirocyclic hydroxamic acids. Bull. Exp. Biol. Med. 162, 228–230.CrossRefGoogle Scholar
  48. 48.
    Furumai R., Matsuyama A., Kobashi N., Lee K.H., Nishiyama M., Nakajima H., Tanaka A., Komatsu Y., Nishino N., Yoshida M. 2002. FK228 (depsipeptide) as a natural pro-drug that inhibits class I histonedeacety-lases. Cancer Res. 62, 4916–4921.Google Scholar
  49. 49.
    Lavu S., Boss O., Elliott P.J., Lambert P.D. 2008. Sirtuins—novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discov. 7, 841–853.CrossRefGoogle Scholar
  50. 50.
    Falkenberg K.J., Johnstone R.W. 2014. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691.CrossRefGoogle Scholar
  51. 51.
    West A.C., Johnstone R.W. 2014. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Investig. 124, 30–39.CrossRefGoogle Scholar
  52. 52.
    Dawson M.A., Kouzarides T. 2012. Cancer epigenetics: From mechanism to therapy. Cell. 150, 12–27.CrossRefGoogle Scholar
  53. 53.
    Kretsovali A., Hadjimichael C., Charmpilas N. 2012. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int. 2012, 184154.CrossRefGoogle Scholar
  54. 54.
    Chen C.L., Sung J., Cohen M., Chowdhury W.H., Sachs M.D., Li Y., Lakshmanan Y., Yung B.Y., Lupold S.E., Rodriguez R. 2006. Valproic acid inhibits invasiveness in bladder cancer but not in prostate cancer cells. J. Pharmacol. Exp. Ther. 319, 533–542.CrossRefGoogle Scholar
  55. 55.
    Stiborova M., Eckschlager T., Poljakova J., Hrabeta J., Adam V., Kizek R., Frei E. 2012. The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Curr. Med. Chem. 19, 4218–4238.CrossRefGoogle Scholar
  56. 56.
    Namdar M., Perez G., Ngo L., Marks P.A. 2010. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA. 107, 20003–20008.CrossRefGoogle Scholar
  57. 57.
    Ramalingam S.S., Maitland M.L., Frankel P., Argiris A.E., Koczywas M., Gitlitz B., Thomas S., Espinoza-Delgado I., Vokes E.E., Gandara D.R. 2010. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 56–62.CrossRefGoogle Scholar
  58. 58.
    Munster P.N., Thurn K.T., Thomas S., Raha P., Lacevic M., Miller A., Melisko M., Ismail-Khan R., Rugo H., Moasser M. 2011. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer. 104, 1828–1835.CrossRefGoogle Scholar
  59. 59.
    Dowdy S.C., Jiang S., Zhou X.C., Hou X., Jin F., Podratz K.C., Jiang S.-W. 2006. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol. Cancer Ther. 5, 2767–2776.CrossRefGoogle Scholar
  60. 60.
    Chen M.Y., Liao W.S.L., Lu Z., Bornmann W.G., Hennessey V., Washington M.N., Rosner G.L., Yu Y., Ahmed A.A., Bast R.C. 2011. Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy. Cancer. 117, 4424–4438.CrossRefGoogle Scholar
  61. 61.
    Griffiths E.A., Gore S.D. 2008. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin. Hematol. 45, 23–30.CrossRefGoogle Scholar
  62. 62.
    Rudek M.A., Zhao M., He P., Hartke C., Gilbert J., Gore S.D., Carducci M.A., Baker S.D. 2005. Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies. J. Clin. Oncol. 23, 3906–3911.CrossRefGoogle Scholar
  63. 63.
    Miller C.P., Singh M.M., Rivera-Del Valle N., Manton C.A., Chandra J. 2011. Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J. Biomed. Biotechnol. 2011, Article ID 514261.Google Scholar
  64. 64.
    Hu Y., Lu W., Chen G., Zhang H., Jia Y., Wei Y., Yang H., Zhang W., Fiskus W., Bhalla K. 2010. Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate. Blood. 116, 2732–2741.CrossRefGoogle Scholar
  65. 65.
    Greve G., Schiffmann I., Pfeifer D., Pantic M., Scheler J., Lebbert M. 2015. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer. 15, 947–957.CrossRefGoogle Scholar
  66. 66.
    Dasmahapatra G., Lembersky D., Son M.P., Attkisson E., Dent P., Fisher R.I., Friedberg J.W., Grant S. 2011. Carfilzomib interacts synergistically with histone deacetylase inhibitors in mantle cell lymphoma cells in vitro and in vivo. Mol. Cancer Ther. 10, 1686–1697.CrossRefGoogle Scholar
  67. 67.
    Groh T., Hrabeta J., Khalil M.A., Doktorova H., Eckschlager T., Stiborova M. 2015. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int. J. Oncol. 47, 343–352.CrossRefGoogle Scholar
  68. 68.
    Kim M.S., Blake M., Baek J.H., Kohlhagen G., Pommier Y., Carrier F. 2003. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 63, 7291–7300.Google Scholar
  69. 69.
    Mazumder A., Vesole D.H., Jagannath S. 2010. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: A case series illustrating utility in clinical practice. Clin. Lymphoma Myeloma Leuk. 10, 149–151.CrossRefGoogle Scholar
  70. 70.
    Afifi S., Michael A., Azimi M., Rodriguez M., Lendvai N., Landgren O. 2015. Role of histone deacetylase inhibitors in relapsed refractory multiple myeloma: A focus on vorinostat and panobinostat. Pharmacotherapy. 35, 1173–1188.CrossRefGoogle Scholar
  71. 71.
    Gryder B.E., Sodji Q.H., Oyelere A.K. 2012. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Fut. Med Chem. 4, 505–524.CrossRefGoogle Scholar
  72. 72.
    O’Connor O.A., Heaney M.L., Schwartz L., Richardson S., Willim R., MacGregor-Cortelli B., Curly T., Moskowitz C., Portlock C., Horwitz S. 2006. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol. 24, 166–173.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. P. Akentieva
    • 1
    Email author
  • A. R. Gizatullin
    • 1
  • S. A. Goncharova
    • 1
  • T. A. Raevskaya
    • 1
  • N. S. Goryachev
    • 1
  • N. I. Shkondina
    • 1
  • T. R. Prichodchenko
    • 1
  • I. V. Vystorop
    • 1
  • S. S. Shushanov
    • 2
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Blokhin Oncological Center, Russian Ministry of HealthMoscowRussia

Personalised recommendations