Advertisement

Visualization of Ovarian Cancer Cells with Peptide VEGEGEEGEEY

  • N. P. AkentievaEmail author
  • S. S. Shushanov
Articles
  • 26 Downloads

Abstract

The binding of peptide VEGEGEEGEEY to the surface of ovarian cancer cells was studied by confocal microscopy. It has been demonstrated that the peptide competes with hyaluronan for the binding to RHAMM (receptor for hyaluronan-mediated motility). It was found that peptide VEGEGEEGEEY specifically bound to RHAMM on ovarian cancer cell surface, and this interaction was blocked by anti-RHAMM antibodies. The peptide did not bind to RHAMM-knockout fibroblasts RHAMM(–/–) but interacted with transfected fibroblasts RHAMM(+/+), which further confirms the binding of the peptide to RHAMM. Evaluation of the peptide binding selectivity showed that the peptide reacts with cancer cells and does not bind to the surface of fibroblasts and normal cells. Thus, the specificity of binding of peptide FITC-VEGEGEEGEEY to RHAMM suggests a possibility of its application as a molecular probe for imaging and diagnosis of ovarian cancer at early stages.

Keywords

peptide VEGEGEEGEEY RHAMM ovarian cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. 2011. Global cancer statistics. CA Cancer J. Clin. 61, 69–3CrossRefPubMedGoogle Scholar
  2. 2.
    Liu X., Chong Y., Liu H., Han Y., Niu M.J. 2015. Novel reversible selective inhibitor of CRM1 for targeted therapy in ovarian cancer. Ovarian Res. 8, 35.CrossRefGoogle Scholar
  3. 3.
    Suh D.H., Kim K., Kim J.W. 2012. Major clinical research advances in gynecologic cancer in 2011. J. Gynecol. Oncol. 23 (1), 53–64.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hildebrandt I.J., Gambhir S.S. 2004. Molecular imaging applications for immunology. Clin. Immunol. 111, 210–3CrossRefPubMedGoogle Scholar
  5. 5.
    Khorsand A. G. S., Pirich C., Muzik O., Kletter K., Dudczak R., Maurer G., Sochor H., Schuster E., Porenta G. 2005. Assessment of myocardial perfusion by dynamic N-13 ammonia PET imaging: Comparison of 2 tracer kinetic models. J. Nucl. Cardiol. 12, 410–3CrossRefPubMedGoogle Scholar
  6. 6.
    Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. 2014. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 10, 1558–3CrossRefPubMedGoogle Scholar
  7. 7.
    Tammi R.H., Kultti A., Kosma V.M., Pirinen R., Auvinen P., Tammi M.I. 2008. Hyaluronan in human tumors: Pathobiological and prognostic messages from cell-associated and stromal hyaluronan. Semin. Cancer Biol. 18, 288–3CrossRefPubMedGoogle Scholar
  8. 8.
    Cowman M.K., Lee H.G., Schwertfeger K.L., McCarthy J.B., Turley E.A. 2015. The content and size of hyaluronan in biological fluids and tissues. Front. Immunol. 6, 261–3CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weiss I., Trope C.G., Reich R., Davidson B. 2012. Hyaluronan synthase and hyaluronidase expression in serous ovarian carcinoma is related to anatomic site and chemotherapy exposure. Int. J. Mol. Sci. 13, 12925–3CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    De Stefano I., Battaglia A., Zannoni G.F., Prisco M.G., Fattorossi A., Travaglia D., Baroni S., Renier D., Scambia G., Ferlini C., Gallo D. 2011. Hyaluronic acid-paclitaxel: Effects of intraperitoneal administration against CD44+ human ovarian cancer xenografts. Cancer Chemother. Pharmacol. 68, 107–3CrossRefPubMedGoogle Scholar
  11. 11.
    Tolg C., Poon R., Riccardo F. 2003. Genetic deletion of receptor for hyaluronan-mediated motility (Rhamm) attenuates the formation of aggressive fibromatosis (desmoid tumor). Oncogene. 22, 6873–3CrossRefPubMedGoogle Scholar
  12. 12.
    Albericio F. 2000. Solid-phase synthesis: A practical guide. 1 ed. Boca Raton: CRC Press.CrossRefGoogle Scholar
  13. 13.
    Kakde D., Jain D., Shrivastava V., Kakde R., Patil A.T. 2011. Cancer therapeutics — opportunities, challenges and advances in drug delivery. J. Appl. Pharmaceut. Sci. 1, 1–3Google Scholar
  14. 14.
    Veiseh M., Breadner D., Ma J., Akentieva N.P., Savani R.C., Harrison R., Mikilus D., Collis L., Gustafson S., Lee T.Y., Koropatnick J., Luyt L.G., Bissell M.J., Turley E. 2012. Imaging of homeostatic, neoplastic, and injured tissues by HA-base probes. Biomacromolecules. 13, 12–3CrossRefPubMedGoogle Scholar
  15. 15.
    Xu L., Cai J., Yang Q., Ding H., Wu L., Li T., Wang Z. 2013. Prognostic significance of several biomarkers in epithelial ovarian cancer: A meta-analysis of published studies. J. Cancer Res. Clin. Oncol. 139, 1257–3Google Scholar
  16. 16.
    Zalutsky I.V. 2006. Methodical and organizational principles of selective screening of cervical cancer, hysterocarcinoma, and ovarian cancer. Vopr. Onkologii (Rus.). 52 (1), 74–77.Google Scholar
  17. 17.
    Bokhman Ya.V., Maksimov S.Ya., Bakhidze E.V. 2008. Detection of solitary and primary-multiple tumors in female reproductive system on the basis of selective screening. In: Novaya meditsinskaya tekhnologiya (Novel medical technology). St. Petersburg: Izd. N-L, pp. 40–45.Google Scholar
  18. 18.
    Chissov V.I., Trakhtenberg A.Kh. 2001. Oshibki v klinicheskoy oinkologii: Rukovodstvo dlya vrachey (Errors in clinical oncology: Physicians’ manual). M.: Meditsina.Google Scholar
  19. 19.
    Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control Release. 65, 271–3CrossRefPubMedGoogle Scholar
  20. 20.
    Weissleder R. 2002. Scaling down imaging: Molecular mapping of cancer in mice. Nat. Rev. Cancer. 2, 11–3CrossRefPubMedGoogle Scholar
  21. 21.
    Yang Y., Wang X., Yang H., Fu H., Zhang J., Zhang X., Dai J., Zhang Z., Lin C., Guo Y., Cui M. 2016. Synthesis and monkey-PET study of (R)-and (S)-18F-labeled 2-arylbenzoheterocyclic derivatives as amyloid probes with distinctive in vivo kinetics. Mol. Pharm. 13, 3852–3CrossRefPubMedGoogle Scholar
  22. 22.
    Tzortzakakis A., Gustafsson O., Karlsson M., Ekström-Ehn L., Ghaffarpour R., Axelsson R. 2017. Visual evaluation and differentiation of renal oncocytomas from renal cell carcinomas by means of 99mTc-sestamibi SPECT/CT. EJNMMI Res. 7, 1–3CrossRefGoogle Scholar
  23. 23.
    Minchin R.F., Martin D.J. 2010. Nanoparticles for molecular imaging-an overview. Endocrinology. 151, 474–3CrossRefPubMedGoogle Scholar
  24. 24.
    Pinaud F., Michalet X., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Iyer G., Weiss S. 2006. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials. 27, 1679–3CrossRefPubMedGoogle Scholar
  25. 25.
    James M.L., Gambhir S.S. 2012. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol. Rev. 92, 897–3CrossRefPubMedGoogle Scholar
  26. 26.
    Zolotarev Yu.A., Dadayan A.K., Kost N.V., Voyevodina M.E., Sokolov O.Yu., Kozik V.S., Shram S.I., Azev V.N., Bocharov E.V., Bogachuk A.P., Lipkin V.M., Myasoyedov N.F. 2015. Quantitative analysis of the hldf-6-amide peptide and its metabolites in tissues of laboratory animals with the use of their tritium-and deuterium-labeled derivative. Bioorg. Khimiya (Rus.). 41 (6), 644–656.Google Scholar
  27. 27.
    Lee S., Xie J., Chen X. 2010. Peptide-based probes for targeted molecular imaging. Biochemistry. 49, 1364–3CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Luyt L.G. 2010. The design of radiolabeled peptides for targeting malignancies. In monoclonal antibody and peptide-targeted radiotherapy of cancer. In: Monoclonal antibody and peptide-targeted radiotherapy of cancer. Ed. Reilly R.M. Hoboken, NJ: USA: John Wiley & Sons, Inc., pp.101–120.CrossRefGoogle Scholar
  29. 29.
    Beer A. J., Haubner R., Wolf I., Goebel M., Luderschmidt S., Niemeyer M., Grosu A.-L., Martinez M.-J., Wester H.J., Weber W.A., Schwaiger M. 2006. PETbased human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha V beta3 expression. J. Nucl. Med. 47, 763–3PubMedGoogle Scholar
  30. 30.
    Akhtar M.S., Qaisar A., Irfanullah J., Iqbal J., Khan B., Jehangir M., Nadeem M.A., Khan M.A., Afzal M.S., ul-Haq I., Imran M.B. 2005. Antimicrobial peptide 99mTc-ubiquicidin 29-41 as human infection-imaging agent: Clinical trial. J. Nucl. Med. 46, 567–3PubMedGoogle Scholar
  31. 31.
    Samuel P., Carter D.R. 2017. The diagnostic and prognostic potential of microRNAs in epithelial ovarian carcinoma. Mol. Diagn. Ther. 21, 59–3CrossRefPubMedGoogle Scholar
  32. 32.
    Kolapalli S.P., Nunna V., Thomas A., Mortha K.K., Banerjee S.D., Boregowda R.K. 2016. Detection of a specific pattern of hyaluronan oligosaccharides and their binding proteins in human ovarian tumour. Cell Biochem. Funct. 34, 217–3CrossRefPubMedGoogle Scholar
  33. 33.
    Greiner J., Ringhoffer M., Taniguchi M., Schmitt A., Kirchner D., Krähn G., Heilmann V., Gschwend J., Bergmann L., Döhner H., Schmitt M. 2002. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp. Hematol. 30, 1029–3CrossRefPubMedGoogle Scholar
  34. 34.
    Turley E.A., Bissell M.J., Winnik F. 2009. Rhamm, a co-receptor and its interactions with other receptors in cancer cell motility and the identification of cancer progenitor cell populations. International Patent US 20100062000 A1.Google Scholar
  35. 35.
    Luyt L.G., Turley E.A., Esguerra K.V. 2011. Rhamm binding peptides. International Patent WO2011/150495. London Health Sciences Centre Research Inc.Google Scholar
  36. 36.
    Garcıa-Posadas L., Contreras-Ruiz L., Lopez-Garcıa A., Alvarez S.V., Maldonado M.J., Diebold Y. 2012. Hyaluronan receptors in the human ocular surface: A descriptive and comparative study of RHAMM and CD44 in tissues, cell lines and freshly collected samples. Histochem. Cell Biol. 137, 165–3Google Scholar
  37. 37.
    Schwertfeger K.L., Cowman M.K., Telmer P.G., Turley E.A., McCarthy J.B. 2015. Hyaluronan, inflammation, and breast cancer progression. Front. Immunol. 6, 1–3CrossRefGoogle Scholar
  38. 38.
    McCourt P.A.G., Smedsrod B.H., Melkko J., Johansson S. 1999. Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors. Hepatology. 30, 1276–3CrossRefPubMedGoogle Scholar
  39. 39.
    Esguerra K.V., Tolg C., Akentieva N., Price M., Cho C.F., Lewis J.D., McCarthy J.B., Turley E.A., Luyt L.G. 2015. Identification, design and synthesis of tubulinderived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR). Integr. Biol. (Camb). 7, 1547–3CrossRefGoogle Scholar
  40. 40.
    Rizzardi A.E., Vogel R.I., Koopmeiners J.S., Forster C.L., Marston L.O., Rosener N.K., Akentieva N., Price M.A., Metzger G.J., Warlick C.A., Henriksen J.C., Turley E.A., McCarthy J.B., Schmechel S.C. 2014. Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer. 120, 1800–3CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Akentyeva N.P., Shushanov S.S. 2016. RHAMM (receptor of hyaluronan-mediated motility)-target peptides induce the apoptosis of prostate cancer cells. Vopr. Onkologii (Rus.). 62 (3), 512–518.Google Scholar
  42. 42.
    Akentyeva N.P., Shushanov S.S., Kotelnikov A.I. 2015. Effect of RHAMM-selective peptides on the survival of breast cancer cells. Byull. Exp. Biol. Med. (Rus.). 159 (5), 618–621.Google Scholar
  43. 43.
    Li H., Moll J., Winkler A., Frappart L., Brunet S., Hamann J., Kroll T., Verlhac M.H., Heuer H., Herrlich P., Ploubidou A. 2015. RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility. Biol. Open. 4, 562–3CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. 2014. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomaterialia. 10, 1558–3CrossRefPubMedGoogle Scholar
  45. 45.
    Savani R.C., Wang C., Yang B., Zhang S., Kinsella M.G., Wight T.N., Stern R., Nance D.M., Turley E.A. 1995. Migration of bovine aortic smooth muscle cells after wounding injury. The role of hyaluronan and RHAMM. J. Clin. Investigation. 95, 1158–3CrossRefGoogle Scholar
  46. 46.
    Tolg C., McCarthy J.B., Yazdani A., Turley E.A. 2014. Hyaluronan and RHAMM in wound repair and the “Cancerization” of stromal tissues. Biomed. Res. Int. 2014, 103923.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Blokhin Russian Cancer Research CenterRussian Ministry of HealthMoscowRussia

Personalised recommendations