The mechanism of neuroprotection by positive modulation of Ca2+-activated K+ channels of cerebellar neurons in primary culture

  • Yu. D. Stepanenko
  • T. V. Karelina
  • D. A. Sibarov
  • P. A. Abushik
  • S. M. Antonov
Short Communication


Here we show that positive modulators (CyPPA and NS309) of Ca2+-activated K+ channels of small (SK) and intermediate (IK) conductances in cerebellar neurons decrease glutamate-evoked Ca2+ entry into neurons independently on the presence of Mg2+ in extracellular media. An analysis of neuronal viability after long-term (240 min) glutamate treatments demonstrated neuroprotective action of CyPPA and NS309. Extracellular Mg2+ did not protect neurons from apoptosis during prolonged treatment with glutamate. Activation of SK and IK channels results in local membrane hyperpolarization, which enhances Mg2+ block of NMDA receptors and reduces activation of voltage-dependent Ca2+ channels, which can explain neuroprotection caused by CyPPA or NS309. The obtained results reveal an important role Ca2+-activated K+ channels of small and intermediate conductance in the regulation of Ca2+ entry into cerebellar neurons via NMDA receptors and voltage-gated Ca2+ channels.


primary culture neurons cerebellum SK channels calcium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slemmer J.E., De Zeeuw C.I., Weber J.T. 2005. Don’t get too excited: Mechanisms of glutamate-mediated Purkinje cell death. Prog. Brain Res. 148, 367–390.CrossRefPubMedGoogle Scholar
  2. 2.
    Abushik P.A., Sibarov D.A., Eaton M.J., Skatchkov S.N., Antonov S.M. 2013. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium. 54 (2), 95–104.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dolga A.M., Terpolilli N., Kepura F., Nijholt I.M., Knaus H.-G., D’Orsi B., Prehn J.H.M., Eisel T., Plant U.L.M., Plesnila N., Culmsee C. 2011. KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death Dis. 2 (4), e147.CrossRefGoogle Scholar
  4. 4.
    Egorova P.A., Karelina T.V., Vlasova O.L., Antonov S.M., Besprozvanny I.B. The effect of modulators of SKchannels on simple spike firing frequency in the discharge of the cerebellar Purkinje cells in laboratory mice. Zh. Evol. Biokhim. Fiziol. (Rus.). 50 (2), 102–108.Google Scholar
  5. 5.
    Karelina T.V., Stepanenko Yu.D., Abushik P.A., Sibarov D.A., Antonov S.M. 2016. Downregulation of Purkinje cell activity by modulators of small conductance calcium-activated potassium channels in rat cerebellum. Acta Naturae. 8 (4), 91–99.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lam J., Coleman N., Garing A.L.A., Wulff H. 2013. The therapeutic potential of small-conductance KCa2 channels in neurodegenerative and psychiatric diseases. Expert Opin. Ther. Targets. 17 (10), 1203–1220.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hockberger P.E., Tseng H.Y., Connor J.A. 1989. Development of rat cerebellar Purkinje cells: Electrophysiological properties following acute isolation and in long-term culture. J. Neurosci. 9 (7), 2258–2271.PubMedGoogle Scholar
  8. 8.
    Mironova E.V., Evstratova A.A., Antonov S.M. 2007. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J. Neurosci. Methods. 163 (1), 1–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Sibarov D.A., Bolshakov A.E., Abushik P.A., Krivoi I.I., Antonov S.M. 2012. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+-exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 343 (3), 596–607.CrossRefPubMedGoogle Scholar
  10. 10.
    D’Angelo E., Filippi G.D., Rossi P., Taglietti V. 1997. Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ. J. Neurophysiol. 78 (3), 1631–1642.PubMedGoogle Scholar
  11. 11.
    Indriaiti D.W., Kamasawa N., Matsui K., Meredith A.L., Watanabe M., Shigemoto R. 2013. Quantitative localization of Cav2.1 (P/Q-type) voltage-dependent calcium channels in Purkinje cells: Somatodendritic gradient and distinct somatic coclustering with calciumactivated potassium channels. J. Neurosci. 33 (8), 3668–3678.CrossRefGoogle Scholar
  12. 12.
    Bloodgood B.L., Sabatini B.L. 2008. Regulation of synaptic signalling by postsynaptic, non-glutamate receptor ion channels. J. Physiol. 586 (6), 1475–1480.CrossRefPubMedGoogle Scholar
  13. 13.
    Ngo-Anh T.J., Bloodgood B.L., Lin M., Sabatini B.L., Maylie J., Adelman J.P. 2005. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 8, 642–649.CrossRefPubMedGoogle Scholar
  14. 14.
    Sibarov D.A., Abushik P.A., Poguzhelskaya E.E., Bolshakov K.V., Antonov S.M. 2015. Inhibition of plasma membrane Na/Ca-exchanger by KB-R7943 or lithium reveals its role in Ca-dependent NMDAR inactivation. J. Pharmacol. Exp. Ther. 355 (3), 484–495.CrossRefPubMedGoogle Scholar
  15. 15.
    Morimura K., Yamamura H., Ohya S., Imaizumi Y. 2006. Voltage-dependent Ca2+-channel block by openers of intermediate and small conductance Ca2+-activated K+ channels in urinary bladder smooth muscle cells. J. Pharmacol. Sci. 100 (3), 237–241.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. D. Stepanenko
    • 1
  • T. V. Karelina
    • 1
  • D. A. Sibarov
    • 1
  • P. A. Abushik
    • 1
  • S. M. Antonov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations