Activation of the contact pathway of blood coagulation on the circulating microparticles may explain blood plasma coagulation induced by dilution

  • M. A. Chelushkin
  • M. A. Panteleev
  • A. N. Sveshnikova
Articles

Abstract

Recent studies have shown that the contact activation of blood coagulation can be initiated on the surface of circulating microparticles–particles formed as a result of the activation or apoptosis of blood cells or endothelial cells. In the present work, by means of a mathematical model, we investigated the mechanism of the activation of contact pathway of blood plasma coagulation. The model describes membrane-dependent reactions of the activation of factors XII and XI with account of the presence of blood plasma inhibitors. All reactions were described by ordinary differential equations integrated by an implicit multistep method. The current mathematical model is based on our previous model of factor XII activation on the platelet surface. The initial model is modified by the addition of factor XI, kallikrein, and blood plasma inhibitors. We show that the amidolytic activity of the contact pathway factors associated with the microparticles is proportional to the concentration of microparticles. In previous studies, an increase in the overall solution amidolytic activity after the dilution of plasma was observed. Computational analysis of the contact pathway activation in the diluted plasma shows that the increase in the activation appears from the dilution of blood plasma inhibitors. Thus, a well-known experimental phenomenon of the hypercoagulability of plasma after dilution can be explained by an increased activation of the blood plasma coagulation through the contact pathway on the circulating microparticles. In addition, the computational analysis reveals that a rapid stop of the contact pathway activation on the microparticles observed in the experiments could be explained by the rapid depletion of the free activation surface.

Keywords

circulating microparticles factor XII membrane-dependent reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panteleev M.A., Ataullakhanov F.I. 2008. Blood coagulation: Biochemical foundations. Klinicheskaya onkogematologia (Rus.). 1 (1), 50–62.Google Scholar
  2. 2.
    Vogler E., Siedlecki C. 2009. Contact activation of blood-plasma coagulation. Biomaterials. 30, 1857–1869.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zakharova N.V., Artemenko E.O., Podoplelova N.A., Sveshnikova A.N., Demina I.A., Ataullakhanov F.I., Panteleev M.A. 2015. Platelet surface-associated activation and secretion-mediated inhibition of coagulation Factor XII. PLoS ONE. 10 (2), e0116665. doi 10.1371/journal.pone.0116665CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O., Andersen J., Ataullakhanov F., Panteleev M. 2014. Circulating contactpathway-activating microparticles together with Factors IXa and XIa Induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS ONE. 9(1), e87692. doi 10.1371/journal.pone.0087692CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Maas C., Renne T. 2012. Regulatory mechanisms of the plasma contact system. Thrombosis Res. 129, 73–76.CrossRefGoogle Scholar
  6. 6.
    Pokhilko A.V., Ataullakhanov F.I. 1998. Contact activation of blood coagulation: Trigger properties and hysteresis. J. Theor. Biol. 191, 213–219.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhuo R., Siedlecki C A., Vogler E.A. 2007. Competitive-protein adsorption in contact activation of blood Factor XII. Biomaterials. 28 (30), 4355–4369.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sinauridze E.I. 2013. Features of hemostasis in hemodilution. Correction of hypercoagulablity after hemodilution by thrombin inhibitors. Doct. Sci. (Biology) Dissertation. Moscow: Hematology Research Center, Ministry of Health, 2013.Google Scholar
  9. 9.
    Wiggins R., Bouma B., Cochrane C., Griffin J. 1977. Role of high-molecular-weight kininogen in surfacebinding and activation of coagulation Factor XI and prekallikrein. Proc. Natl. Acad. Sci. USA. 74 (10), 4636–4640.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Robert R.M., Decrem D.Y., Rath R.G., Dessy D.C., Feron F.O., Mullier F.M., Devel P.D., Chatelain B.C., Dogné J.M.D., Godfroid E.G. 2011. The tick protein Ir-CPI efficiently delays contact pathway induced thrombin generation and displays in vivo antithrombotic activity. 26th General Meeting of the Belgian Hematological Society, Liège, 2011.Google Scholar
  11. 11.
    Hansson K.M., Nielsen S., Deinum M.E., Deinum J. 2014. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood. J. Thrombosis Haemostasis. 12 (10), 1678–1686.CrossRefGoogle Scholar
  12. 12.
    Pixley R.A., Schapira M., Colman R.W. 1985. The regulation of human Factor XIIa by plasma proteinase inhibitors. J. Biol. Chem. 260 (3), 1723–1729.PubMedGoogle Scholar
  13. 13.
    Espana F., Berrettini M., Griffin J.H. 1989. Purification and characterization of plasma protein C inhibitor. Thrombosis Res. 55, 369–384.CrossRefGoogle Scholar
  14. 14.
    Schapira M., Scott Ch., Colman R. 1981. Protection of human plasma kallikrein from inactivation by C1 inhibitor and other protease inhibitors. The role of high molecular weight kininogen. Biochemistry. 20, 2738–2743.PubMedGoogle Scholar
  15. 15.
    Schapira M., Scott Ch., James A., Silver L., Kueppers F., James H., Colman R. 1982. High molecular weight kininogen or its light chain protects human plasma kallikrein from inactivation by plasma protease inhibitors. Biochemistry. 21, 567–572.CrossRefPubMedGoogle Scholar
  16. 16.
    Scott Ch., Schapira M., James H., Cohen A., Colman R. 1982. Inactivation of Factor XIa by plasma protease inhibitors. Predominant role of a1-protease inhibitor and protective effect of high molecular weight kininogen. J. Clin. Invest. 69, 844–852.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cowan A.E., Moraru I.I., Schaff J.C., Slepchenko B.M., Loew L.M. 2012. Spatial modeling of cell signaling networks. Methods Cell Biol. 110, 195–221.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N., Singhal M., Xu L., Mendes P., Kummer U. 2006. COPASI–a COmplex PAthway SImulator. Bioinformatics. 22, 3067–3074.CrossRefPubMedGoogle Scholar
  19. 19.
    Mendes P., Hoops S., Sahle S., Gauges R., Dada J., Kummer U. 2009. Computational modeling of biochemical networks using COPASI. Methods Mol. Biol. 500, 17–59.CrossRefPubMedGoogle Scholar
  20. 20.
    Revak S.D., Cochrane C.G., Bouma B.N., Griffin J.N. 1978. Surface and fluid phase activities of two forms of activated Hageman Factor produced during contact activation of plasma. J. Exp. Med. 147, 719–729.CrossRefPubMedGoogle Scholar
  21. 21.
    Jonathan F.T., Fujikawa K. 1987. Primary structure requirements for the binding of human high molecular weight kininogen to plasma prekallikrein and Factor XI. J. Biol. Chem. 262 (24), 11651–11656.Google Scholar
  22. 22.
    Tankersley D.L., Finlayson J.S. 1984. Kinetics of activation and autoactivation of human Factor XII. Biochemistry. 23, 273–279.CrossRefPubMedGoogle Scholar
  23. 23.
    Fujikawa K., Heimark R.L., Kurachi K., Davie E.W. 1980. Activation of bovine Factor XII (Hageman Factor) by plasma kallikrein. Biochemistry. 19, 1322–1330.CrossRefPubMedGoogle Scholar
  24. 24.
    Hojima Y., Pierce J., Pisano J. 1980. Hageman Factor fragment inhibitor in corn seeds: Purification and characterization. Thrombosis Res. 20, 149–162.CrossRefGoogle Scholar
  25. 25.
    Rosing J., Tans G., Griffin J.H. 1985. Surface-dependent activation of human Factor XI1 (Hageman Factor) by kallikrein and its light chain. Eur. J. Biochem. 151, 531–538.CrossRefPubMedGoogle Scholar
  26. 26.
    Bernardo M.M., Day D.E., Olson S.T., Shore J.D. 1993. Surface-independent acceleration of Factor XII activation by zinc ions: I. Kinetic characterization of the metal ion rate enhancement. J. Biol. Chem. 268 (17), 12468–12476.PubMedGoogle Scholar
  27. 27.
    Tans G., Janssen-Claessen T., Rosing J., Griffin J.H. 1987. Studies on the effect of serine protease inhibitors on activated contact factors. Application in amidolytic assays for Factor XIIa, plasma kallikrein and factor XIa. Eur. J. Biochem. 164, 637–642.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. A. Chelushkin
    • 1
  • M. A. Panteleev
    • 1
    • 2
    • 3
    • 4
  • A. N. Sveshnikova
    • 1
    • 2
    • 3
    • 5
  1. 1.Faculty of PhysicsMoscow Lomonosov State UniversityMoscowRussia
  2. 2.Center for Theoretical Problems of Physicochemical PharmacologyRussian Academy of SciencesMoscowRussia
  3. 3.Federal Research and Clinical Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
  4. 4.Faculty of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyiRussia
  5. 5.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations