Epileptiform curents in rat cortical neurons increase over time of the in vitro culture period

  • D. A. Sibarov
  • P. A. Abushik
  • S. M. Antonov
Short Communications


Here we show that in primary culture of rat cortical neurons the number of episodes of epileptiform curents (EC) provoked by extracellular magnesium removal increases over time. We demonstrate that NMDA receptor agonists in low concentrations induce an elevation of frequency of miniature postsynaptic currents followed by their synchronization resulting in EC. Ifenprodil did not block EC but strongly inhibited NMDA-evoked whole-cell currents, which say for a key role of the ifenprodil-resistant synaptic GluN2A-containing NMDA receptors in the generation of EC. We suppose that in cultured neurons the onset of EC and a gradual increase of the EC amplitude over the time of culture period is directed by an increase of synaptic connections density and displacement of the GluN2B subunit by GluN2A in synapses.


epileptiform currents primary culture neurons cortex NMDA receptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sibarov D.A., Antonov S.M. 2013. The features of postsynaptic currents in primary culture of rat cortical neurons. Ross. Fiziol. Zh. Im. I.M. Sechenova (Rus). 99 (6), 763–775.Google Scholar
  2. 2.
    Sibarov D.A., Abushik P.A., Bolshakov A.E., Karelina T.V., Krivoi I.I., Antonov S.M. 2014. Epileptiform postsynaptic currents in primary culture of rat cortical neurons: Calcium mechanisms. Biochemistry (Moscow) Suppl. Ser. A: Membr. and Cell Biol. 8, 169–177.CrossRefGoogle Scholar
  3. 3.
    Stocca G., Vicini S. 1998. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J. Physiol. 507, 13–24.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Abushik P.A., Bolshakov A.E., Sibarov D.A., Antonov S.M. 2011. Mechanisms of heterogeneity of calcium response to kainate and neuronal types in rat cortical primary culture. Biochemistry (Moscow) Suppl. Ser. A: Membr. and Cell Biol. 5, 92–100.CrossRefGoogle Scholar
  5. 5.
    Antonov S.M., Johnson J.W. 1996. Voltage-dependent interaction of open channel blocking molecules with gating of NMDA receptors in rat cortical neurons. J. Physiol. 493, 425–445.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mironova E.V., Lukina A.A., Brovtsyna N.B., Krivchenko A.I., Antonov S.M. 2006. Glutamate receptors types defining neurotoxic glutamate action on rat cortex neurons. Zh. Evol. Biokhim. Fiziol. (Rus.) 42, 559–566.Google Scholar
  7. 7.
    Williams K. 1993. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: Selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44, 851–859.PubMedGoogle Scholar
  8. 8.
    Modo M., Hitchens T.K., Liu J.R., Richardson R.M. 2016. Detection of aberrant hippocampal mossy fiber connections: Ex vivo mesoscale diffusion MRI and microtractography with histological validation in a patient with uncontrolled temporal lobe epilepsy. Hum. Brain. Mapp. 37, 780–795.CrossRefPubMedGoogle Scholar
  9. 9.
    Tovar K.R., Westbrook G.L. 1999. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180–4188.PubMedGoogle Scholar
  10. 10.
    Rao A., Craig A.M. 1998. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron. 19, 801–812.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. A. Sibarov
    • 1
  • P. A. Abushik
    • 1
  • S. M. Antonov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt.-PetersburgRussia

Personalised recommendations