Epileptiform postsynaptic currents in primary culture of rat cortical neurons: Calcium mechanisms

  • D. A. Sibarov
  • P. A. Abushik
  • A. E. Bolshakov
  • T. V. Karelina
  • I. I. Krivoi
  • S. M. Antonov


In this study we demonstrate that the primary culture of rat cortical neurons is a convenient model for investigations of epileptogenesis mechanisms and specifically, of the postsynaptic epileptiform currents (EC) reflecting periodical asynchronous glutamate release. In particular, we have revealed that in primary culture of cortical neurons EC can appear spontaneously or can be triggered by the withdrawal of magnesium block of NMDA receptor channels or by shutting down GABAergic inhibition. EC were found to depend on intracellular calcium oscillations. The secondary calcium release from intracellular stores was needed for EC synchronization. EC were suppressed by the influences causing either neuronal calcium overload or decrease of intracellular calcium concentration. Calcium entry into neurons in the case of NMDA receptor hyperactivation or in the case of calcium ionophore ionomycin treatment eliminated EC. The suppression of EC also occurred after a decrease of intracellular calcium concentration induced by BAPTA loaded into the neurons or by stimulation of calcium removal from cells via Na+/Ca2+ exchanger by 1 nM ouabain. Partial dependence of EC on action potential generation was found. Thus, EC in neurons are activated by intracellular periodic calcium waves within a limited concentration window.


epileptiform currents primary culture neurons cortex calcium ouabain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wong M., Yamada K.A. 2001. Developmental characteristics of epileptiform activity in immature rat neocortex: A comparison of four in vitro seizure models. Brain Res. Dev. Brain Res. 128(2), 113–120.PubMedCrossRefGoogle Scholar
  2. 2.
    Jiang Q., Wang J., Wu Y., Wu X., Qin J., Jiang Y. 2008. Early-life epileptiform discharges exert both rapid and long-lasting effects on AMPAR subunit composition and distribution in developing neurons. Neurosci. Lett. 444(1), 31–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Friedman L.K., Velísková A. 1999. GluR2 antisense knockdown produces seizure behavior and hippocampal neurodegeneration during a critical window. Ann. N.Y. Acad. Sci. 868, 541–545.PubMedCrossRefGoogle Scholar
  4. 4.
    Sibarov D.A., Antonov S.M. 2013. The features of postsynaptic currents in primary culture of rat cortical neurons. Ros. Fiziol. Zh. (Rus.). 99(6), 763–775.Google Scholar
  5. 5.
    DeLorenzo R.J., Sun D.A., Deshpande L.S. 2005. Cellular mechanisms underlying acquired epilepsy: The calcium hypothesis of the induction and maintenance of epilepsy. Pharmacol. Ther. 105(3), 229–266.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Cao H.Y., Jiang Y.W., Liu Z.W., Wu X.R. 2003. Effect of recurrent epileptiform discharges induced by magnesium-free treatment on developing cortical neurons in vitro. Brain Res. Dev. Brain Res. 142(1), 1–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Swartzwelder H.S., Anderson W.W., Wilson W.A. 1988. Mechanism of electrographic seizure generation in the hippocampal slice in Mg2+-free medium: The role of GABAA inhibition. Epilepsy Res. 2(4), 239–245.PubMedCrossRefGoogle Scholar
  8. 8.
    Gutnick M.J., Wolfson B., Baldino F. 1989. Synchronized neuronal activities in neocortical explant cultures. Exp. Brain Res. 76(1), 131–140.PubMedCrossRefGoogle Scholar
  9. 9.
    Domijan A.-M., Kovac S., Abramov A.Y. 2012. Impact of Fumonisin B1 on glutamate toxicity and low magnesium-induced seizure activity in neuronal primary culture. Neuroscience. 202, 10–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Katz B. 1966. Nerve, muscle and synapse. McGraw Hill Text.Google Scholar
  11. 11.
    Zefirov A.L., Cheranov S.Yu. 2000. The molecular mechanisms of quantum mediator secretion in the synapse. Usp. Fiziol. Nauk (Rus.). 31(3), 3–22.Google Scholar
  12. 12.
    Antonov S.M., Magazanik L.G. 1988. Intense nonquantal release of glutamate in an insect neuromuscular junction. Neurosci. Lett. 93(2–3), 204–208.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang J., Jiang Y., Cao H., Yu L., Bo T., Ni H., Jiang Q., Wu X. 2006. Long-term effect of early discharge on sEPSC and [Ca2+]i in developing neurons. Neurosci. Lett. 397(1–2), 104–109.PubMedCrossRefGoogle Scholar
  14. 14.
    Myme C.I.O., Sugino K., Turrigiano G.G., Nelson S.B. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. J. Neurophysiol. 90(2), 771–779.Google Scholar
  15. 15.
    Mironova E.V., Lukina A.A., Brovtsyna N.B., Krivchenko A.I., Antonov S.M. 2006. Glutamate receptors types defining neurotoxic glutamate action on rat cortex neurons. Zh. Evol. Biokhim. Fiziol. (Rus.). 42, 559–566.Google Scholar
  16. 16.
    Antonov S.M., Johnson J.W. 1996. Voltage-dependent interaction of open channel blocking molecules with gating of NMDA receptors in rat cortical neurons. J. Physiol. 493, 425–445.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Han E.B., Stevens C.F. 2009. Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation. Proc. Natl. Acad. Sci. USA. 106, 10817–10822.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Antonov S.M., Kalinina N.I., Kurchavyj G.G., Magazanik L.G., Shupliakov O.V., Vesselkin N.P. 1990. Identification of two types of excitatory monosynaptic inputs in frog spinal motoneurones. Neurosci. Lett. 109(1–2), 82–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86, 279–351.PubMedCrossRefGoogle Scholar
  20. 20.
    Sibarov D.A., Bolshakov A.E., Abushik P.A., Krivoi I.I., Antonov S.M. 2012. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+-exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 343(3), 596–607.PubMedCrossRefGoogle Scholar
  21. 21.
    McPherson P.S., Kim Y.K., Valdivia H., Knudson C.M., Takekura H., Franzini-Armstrong C., Coronado R., Campbell K.P. 1991. The brain ryanodine receptor: A caffeine-sensitive calcium release channel. Neuron. 7(1), 17–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Bootman M.D., Collins TJ., Mackenzie L., Roderick H.L., Berridge M.J., Peppiatt C.M. 2002. 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of storeoperated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J. 16(10), 1145–1150.PubMedCrossRefGoogle Scholar
  23. 23.
    Abushik P.A., Sibarov D.A., Eaton M.J., Skatchkov S.N., Antonov S.M. 2013. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium. 54(2), 95–104.PubMedCrossRefGoogle Scholar
  24. 24.
    DeLorenzo R., Pal S., Sombati S. 1998. Prolonged activation of the N-methyl-D-aspartate receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture. Proc. Natl. Acad. Sci. USA. 95, 14482–14487.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Mao B.Q., Hamzei-Sichani E., Aronov D., Froemke R.C., Yuste R. 2001. Dynamics of spontaneous activity in neocortical slices. Neuron. 32, 883–898.PubMedCrossRefGoogle Scholar
  26. 26.
    Jimbo Y., Tateno T., Robinson H.P.C. 1999. Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophys. J. 76, 670–678.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ito D., Tamate H., Nagayama M., Uchida T., Kudoh S.N., Gohara K. 2010. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays. Neuroscience. 171, 50–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Antonov S.M., Johnson J.W. 1999. Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+. Proc. Natl. Acad. Sci. USA. 96(25), 14571–14576.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Tancredi V., Hwa G.G., Zona C., Brancati A., Avoli M. 1990. Low magnesium epileptogenesis in the rat hippocampal slice: Electrophysiological and pharmacological features. Brain Res. 511(2), 280–290.PubMedCrossRefGoogle Scholar
  30. 30.
    Sombati S., DeLorenzo R.J. 1995. Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J. Neurophysiol. 73(4), 1706–1711.PubMedGoogle Scholar
  31. 31.
    Sun D.A., Sombati S., Blair R.E., DeLorenzo R.J. Long-lasting alterations in neuronal calcium homeostasis in an in vitro model of stroke-induced epilepsy. Cell Calcium. 35(2), 155–163.Google Scholar
  32. 32.
    Abushik P.A., Bolshakov A.E., Sibarov D.A., Antonov S.M. 2011. Mechanisms of heterogeneity of calcium response to kainate and neuronal types in rat cortical primary culture. Biochem. (Moscow) Suppl.Series A: Membrane and Cell Biology. 5(1), 92–100.CrossRefGoogle Scholar
  33. 33.
    Pal S., Sun D., Limbrick D., Rafiq A., DeLorenzo R.J. 2001. Epileptogenesis induces long-term alterations in intracellular calcium release and sequestration mechanisms in the hippocampal neuronal culture model of epilepsy. Cell Calcium. 30(4), 285–296.PubMedCrossRefGoogle Scholar
  34. 34.
    Bolshakov A.E., Sibarov D.A., Abushik P.A., Krivoi I.I., Antonov S.M. 2012. Dose-dependence of antiapoptotic and toxic action of ouabain in neurons of primary cultures of rat cortex. Biochem. (Moscow) Suppl. Series A: Membrane and Cell Biology. 6(4), 294–299.CrossRefGoogle Scholar
  35. 35.
    Blaustein M.P. 1993. Physiological effects of endogenous ouabain: Control of intracellular Ca2+ stores and cell responsiveness. Am. J. Physiol. Cell. Physiol. 264, C1367–C1387.Google Scholar
  36. 36.
    Schoner W., Scheiner-Bobis G. 2007. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am. J. Cardiovasc. Drugs. 7, 173–189.PubMedCrossRefGoogle Scholar
  37. 37.
    Bagrov A.Y, Shapiro J.I. 2008. Endogenous digitalis: Pathophysiologic roles and therapeutic applications. Nat. Clin. Pract. Nephrol. 4, 378–392.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. A. Sibarov
    • 1
    • 2
  • P. A. Abushik
    • 1
    • 2
  • A. E. Bolshakov
    • 1
  • T. V. Karelina
    • 1
    • 2
  • I. I. Krivoi
    • 3
  • S. M. Antonov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Laboratory of Molecular NeurodegenerationSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.St.Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations