Dose-dependence of antiapoptotic and toxic action of ouabain in neurons of primary cultures of rat cortex

  • A. E. Bolshakov
  • D. A. Sibarov
  • P. A. Abushik
  • I. I. Krivoi
  • S. M. Antonov


Effects of 0.01 nM–1 nM ouabain on neuronal survival in excitotoxic stress and ouabain self toxic action in concentrations from 10 nM to 30 μM were studied. Neuronal viability was evaluated by measuring Bcl-2 protein expression and using vital staining test allowing recognition of live, necrotic and apoptotic cells. Excitotoxic stress was induced by 240-min treatment with agonists of ionotropic glutamate receptors (NMDA or kainate). Experiments were performed on rat primary neuronal cultures of 7–14 DIV (days in vitro). Thirty μM NMDA induced apoptosis in 45 ± 9% (n = 5), and 30 μM kainate, in 52 ± 5% (n = 5) of neurons. An antiapoptotic effect of ultra low (0.01 nM–1 nM) ouabain concentrations was found to restore Bcl-2 expression and to bring apoptosis level back to control values (about 10%, n = 5). Since in this concentration range ouabain is not able to inhibit NKA, we conclude that neuroprotection discloses the signaling function of NKA. Whereas ouabain self toxic action in higher concentrations (10 nM–30 μM, during 240 min) resulted in necrotic death of 45% neurons (apoptosis remained as under the control conditions), the large portion of neurons were unaffected. The relatively low threshold concentration of ouabain toxic action (10 nM) is consistent with the sensitivity to ouabain of α3-isoform of NKA. Thus, ouabain was found to have a bimodal effect, including antiapoptotic action in excitotoxic stress in the concentration range from 0.01 nM to 1 nM, and self toxic action at larger concentrations. Self toxicity of ouabain is initiated through inhibition of NKA pumping function. Neuronal heterogeneity with respect to ouabain toxic action is probably related with the different expression of α1 and α3-isoforms of NKA in pyramid neurons and interneurons.


Na,K-ATPase ouabain apoptosis cortical neurons glutamate receptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doyle K.P., Simon R.P., Stenzel-Poore M.P. 2008. Mechanisms of ischemic brain damage. Neuropharmacology. 55, 310–318.PubMedCrossRefGoogle Scholar
  2. 2.
    Antonov S.M., Magazanik L.G., 1988. Intense nonquantal release of glutamate in an insect neuromuscular junction. Neurosci. Lett., 93(2–3), 204–208.PubMedCrossRefGoogle Scholar
  3. 3.
    Khodorov B., Pinelis V., Storozhevykh T., Vergun O., Vinskaya N. 1996. Dominant role of mitochondria in protection against a delayed neuronal Ca2+ overload induced by endogenous excitatory amino acids following a glutamate pulse. FEBS Lett. 393(1), 135–138.PubMedCrossRefGoogle Scholar
  4. 4.
    Khodorov B.I. 2003. Disorders of neuronal calcium homeostasis while hiperstimulation of glutamate receptors. Patogenez. (Rus.). 1, 20–33.Google Scholar
  5. 5.
    Abushik P.A., Bolshakov A.E., Sibarov D.A., Antonov S.M. 2011. Mechanisms of heterogeneity of calcium response to kainate and neuronal types in rat cortical primary culture. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 5(1), 92–100.CrossRefGoogle Scholar
  6. 6.
    Evstratova A.A., Mironova E.V., Dvoretskova E.A., Antonov S.M. 2008. Apoptosis and its receptor selective pathways during neurotoxic action of glutamate. Ross. Fiziol. Zh. im. I.M. Sechenova. (Rus.). 94, 380–393.Google Scholar
  7. 7.
    Karpova L.V., Bulygina E.R., Boldyrev A.A. 2010. Different neuronal Na+/K+-ATPase isoforms are involved in diverse signaling pathways. Cell Biochem. Funct. 28(2), 135–141.PubMedCrossRefGoogle Scholar
  8. 8.
    Oselkin M., Tian D., Bergold P.J. 2010. Low-dose cardiotonic steroids increase sodium-potassium ATPase activity that protects hippocampal slice cultures from experimental ischemia. Neurosci. Lett., 473(2), 67–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Golden W.C., Martin L.J. 2006. Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo. Neuroscience. 137(1): 133–144.PubMedCrossRefGoogle Scholar
  10. 10.
    Antonov S.M., Krivoi I.I., Drabkina T.M., Mironova E.V., Evstratova A.A. 2009. Neuroprotective effect of ouabain and Bcl-2 peptide expression during hyperactivation of NMDA receptors in rat brain cortical neurons in vitro. Dokl. Biol. Sciences. 426, 207–209.CrossRefGoogle Scholar
  11. 11.
    Xie Z. 2003. Molecular mechanisms of Na/K-ATPasemediated signal transduction. Ann. N.Y. Acad. Sci. 986, 497–503.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang L., Zhang Z., Guo H., Wang Y. 2008. Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam. Clin. Pharmacol. 22(6), 615–621.PubMedCrossRefGoogle Scholar
  13. 13.
    Corrêa G.R., Cunha K., Santos A., Araujo E. 2010. The trophic effect of ouabain on retinal ganglion cell is mediated by EGF receptor and PKC delta activation. Neurochem. Res. 35, 1343–1352.CrossRefGoogle Scholar
  14. 14.
    Trevisi L., Visentin B., Cusinato F., Pighin I., Luciani S. 2004. Antiapoptotic effect of ouabain on human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 321(3), 716–721.PubMedCrossRefGoogle Scholar
  15. 15.
    Dvela M., Rosen H., Ben-Ami H.C., Lichtstein D. 2012. Endogenous ouabain regulates cell viability. Am. J. Physiol. Cell Physiol. 302(2), 442–452.CrossRefGoogle Scholar
  16. 16.
    Mironova E.V., Evstratova A.A., Antonov S.M. 2007. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J. Neurosci. Methods, 163(1), 1–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Antonov S.M., Johnson J.W. 1999. Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+. Proc. Natl. Acad. Sci. USA. 96, 14571–14576.PubMedCrossRefGoogle Scholar
  18. 18.
    Green D.R., Reed J. 1998. Mitochondria and apoptosis. Science. 281, 1309–1312.PubMedCrossRefGoogle Scholar
  19. 19.
    Adams J.M., Cory S. 1998. The Bcl-2 protein family: Arbiters of cell survival. Science. 281, 1322–1326.PubMedCrossRefGoogle Scholar
  20. 20.
    Richards K.S., Bommert K., Szabo G., Miles R. 2007. Differential expression of Na+/K+-ATPase alpha-subunits in mouse hippocampal interneurones and pyramidal cells. J. Physiol., 585(Pt 2), 491–505.PubMedCrossRefGoogle Scholar
  21. 21.
    Xiao A.Y., Wei L., Xia S., Rothman S., Yu S.P. 2002. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J. Neurosci. 22(4), 1350–1362.PubMedGoogle Scholar
  22. 22.
    Lingrel J.B. 2010. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu. Rev. Physiol. 72, 395–412.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. E. Bolshakov
    • 1
  • D. A. Sibarov
    • 1
  • P. A. Abushik
    • 1
  • I. I. Krivoi
    • 2
  • S. M. Antonov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations