Effects of salicylic and jasmonic acid on phospholipase D activity and the level of active oxygen species in soybean seedlings

  • T. A. Kalachova
  • O. M. Iakovenko
  • S. V. Kretinin
  • V. S. Kravets


Plant cell metabolism reactions upon biotic stress conditions are initiated via cellular signaling systems. At the same time, signaling pathways of phytohormonal mediators of biotic stress induction, salicylic acid and jasmonic acid, and their intracellular activities are implemented in cooperation with lipid-derived regulatory elements. In this work we have found that salicylic acid treatment evoke activation of phospholipase D responsible for the production of second messenger phosphatidic acid. Mediators of the defense reactions also affected the balance of active oxygen species and in particular induced accumulation of endogenous hydrogen peroxide and changes in the activities of antioxidant enzymes (catalase, peroxidases, and superoxide dismutase). Our results point out to the interactions between lipid signaling enzymes and cellular antioxidant systems required for realization of primary adaptation responses to biotic stress mediators in plants.


phospholipases intracellular signalization reactive oxygen species salicylic acid jasmonic acid stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomma B.P.H.J., Penninckx I.A.M.A., Cammue B.P.A., and Broekaert W.F. 2001. The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology. 13(1), p. 63–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Gupta V., Willits M.G., and Glazebrook J. 2000. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: Evidence for inhibition of jasmonic acid signaling by SA. Molecular Plant-Microbe Interactions. 13(5), p. 503–511.PubMedCrossRefGoogle Scholar
  3. 3.
    Koornneef A. and Pieterse C.M.J. 2008. Cross talk in defense signaling. Plant Physiology. 146(3), p. 839–844.PubMedCrossRefGoogle Scholar
  4. 4.
    Kumari G.J., Reddy A.M., Naik S.T., Kumar S.G., Prasanthi J., Sriranganayakulu G., Reddy P.C., and Sudhakar C. 2006. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biologia Plantarum. 50(2), p. 219–226.CrossRefGoogle Scholar
  5. 5.
    Testerink C. and Munnik T. 2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends in Plant Science. 10(8), p. 368–375.PubMedCrossRefGoogle Scholar
  6. 6.
    Profotová B., Burketová L., Novotná Z., Martinec J., and Valentová O. 2006. Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiology and Biochemistry. 44(2–3), p. 143–151.PubMedCrossRefGoogle Scholar
  7. 7.
    van Leeuwen W., ÖKrész L., Bögre L., and Munnik T. 2004. Learning the lipid language of plant signalling. Trends in Plant Science. 9(8), p. 378–384.PubMedCrossRefGoogle Scholar
  8. 8.
    Wong H.L. and Shimamoto K. 2009. Sending ROS on a Bullet Train. Sci. Signal. 2(90), p. 60–61.CrossRefGoogle Scholar
  9. 9.
    Dinakar C., Abhaypratap V., Yearla S., Raghavendra A., and Padmasree K. 2010. Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta. 231(2), p. 461–474.PubMedCrossRefGoogle Scholar
  10. 10.
    Hayat Q., Hayat S., Irfan M., and Ahmad A. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany. 68(1), p. 14–25.CrossRefGoogle Scholar
  11. 11.
    Kravets V.S., Kolesnikov Y.S., Kretynin S.V., Getman I.A., and Romanov G.A. 2010. Rapid activation of specific phospholipase(s) D by cytokinin in Amaranthus assay system. Physiologia Plantarum. 138(3), p. 249–255.PubMedCrossRefGoogle Scholar
  12. 12.
    Pinto M.D.C., Tejeda A., Duque A.L., and Macías P. 2007. Determination of lipoxygenase activity in plant extracts using a modified ferrous oxidation-xylenol orange assay. Journal of Agricultural and Food Chemistry. 55(15), p. 5956–5959.CrossRefGoogle Scholar
  13. 13.
    De Azevedo Neto A.D., Prisco J.T., Enéas-Filho J., Abreu C.E.B.D., and Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany. 56(1), p. 87–94.CrossRefGoogle Scholar
  14. 14.
    Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 72(1–2), p. 248–254.PubMedCrossRefGoogle Scholar
  15. 15.
    Kachroo A. and Kachroo P., Salicylic Acid-, Jasmonic Acid- and Ethylenemediated Regulation of Plant Defense Signaling, in Genetic Engineering, Setlow J.K., Editor. 2007, Springer US. p. 55–83.Google Scholar
  16. 16.
    Kumar D., Gustafsson C., and Klessig D.F. 2006. Validation of RNAi silencing specificity using synthetic genes: salicylic acid-binding protein 2 is required for innate immunity in plants. The Plant Journal. 45(5), p. 863–868.PubMedCrossRefGoogle Scholar
  17. 17.
    Krinke O., Ruelland E., Valentová O., Vergnolle C., Renou J.-P., Taconnat L., Flemr M., Burketová L., and Zachowski A. 2007. Phosphatidylinositol 4-Kinase Activation Is an Early Response to Salicylic Acid in Arabidopsis Suspension Cells. Plant Physiology. 144(3), p. 1347–1359.PubMedCrossRefGoogle Scholar
  18. 18.
    Altu-zar-Molina A.R., Muñoz-Sánchez J.A., Vázquez-Flota F., Monforte-González M., Racagni-Di Palma G., and Hernández-Sotomayor S.M.T. 2011. Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiology and Biochemistry. 49(2), p. 151–158.CrossRefGoogle Scholar
  19. 19.
    Krinke O., Flemr M., Vergnolle C., Collin S., Renou J.P., Taconnat L., Yu A., Burketová L., Valentová O., Zachowski A., and Ruelland E. 2009. Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiology. 150(1), p. 424–436.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., and Wang X. 2009. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in arabidopsis. Plant Cell. 21(8), p. 2357–2377.PubMedCrossRefGoogle Scholar
  21. 21.
    Chao Y.-Y., Chen C.-Y., Huang W.-D., and Kao C.H. 2010. Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant and Soil. 329(1), p. 327–337.CrossRefGoogle Scholar
  22. 22.
    Wong H.L. and Shimamoto K. 2009. Sending ROS on a bullet train. Science Signaling. 2(90).Google Scholar
  23. 23.
    Torres M.A., Jones J.D.G., and Dangl J.L. 2006. Reactive Oxygen Species Signaling in Response to Pathogens. Plant Physiology. 141(2), p. 373–378.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumari G., Reddy A., Naik S., Kumar S., Prasanthi J., Sriranganayakulu G., Reddy P., and Sudhakar C. 2006. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biologia Plantarum. 50(2), p. 219–226.CrossRefGoogle Scholar
  25. 25.
    Knörzer O.C., Lederer B., Durner J., and Böger P. 1999. Antioxidative defense activation in soybean cells. Physiologia Plantarum. 107(3), p. 294–302.CrossRefGoogle Scholar
  26. 26.
    Anderson M.D., Chen Z., and Klessig D.F. 1998. Possible involvement of lipid peroxidation in salicylic acidmediated induction of PR-1 gene expression. Phytochemistry. 47(4), p. 555–566.CrossRefGoogle Scholar
  27. 27.
    Ahmad P., Sarwat M., and Sharma S. 2008. Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology. 51(3), p. 167–173.CrossRefGoogle Scholar
  28. 28.
    Gechev T.S., Van Breusegem F., Stone J.M., Denev I., and Laloi C. 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays. 28(11), p. 1091–1101.PubMedCrossRefGoogle Scholar
  29. 29.
    Mika A., Boenisch M.J., Hopff D., and Lüthje S. 2010. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. Journal of Experimental Botany. 61(3), p. 831–841.PubMedCrossRefGoogle Scholar
  30. 30.
    Mur L.A.J., Kenton P., Atzorn R., Miersch O., and Wasternack C. 2006. The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death. Plant Physiol. 140(1), p. 249–262.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. A. Kalachova
    • 1
  • O. M. Iakovenko
    • 1
  • S. V. Kretinin
    • 1
  • V. S. Kravets
    • 1
  1. 1.Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKiev-94Ukraine

Personalised recommendations