Redox dependence of transport activity of tonoplast proton pumps: Effects of nitric oxide exposure during ontogenesis and under hypoosmotic and hyperosmotic stress

  • N. V. Ozolina
  • E. V. Kolesnikova
  • V. N. Nurminsky
  • I. S. Nesterkina
  • L. V. Dudareva
  • A. V. Tretyakova
  • R. K. Salyaev


Variations of the redox status is shown to inhibit the transport activity of tonoplast proton pumps at different stages of ontogenesis and under the conditions of hyperosmotic stress. However, the activity of H+-ATPase increased by 60% under hypoosmotic stress in the presence of GSH. The influence of nitric oxide on the transport activity of tonoplast proton pumps also depended on the redox status. In the case of change of the redox status, stimulating effect of nitric oxide turned inhibitory, except for simultaneous application of hypoosmotic stress and nitric oxide. In this case, stimulation of both proton pumps was observed and the activity of H+-ATPase increased in the presence of GSH, though the activity of H+-PPase increased in the presence of GSSG. This may explain the necessity of the presence in the vacuolar membrane of two proton pumps having similar functions.


redox status proton pumps nitric oxide ontogenesis osmotic stress 


  1. 1.
    Maeshima M. 2001. Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 52, 469–497.PubMedCrossRefGoogle Scholar
  2. 2.
    Tavakoli N., Kluge C., Golldack D., Mimura T., Dietz K. 2001. Reversible redox control of plant vacuolar H+-ATPase activity related to disulfide bridge formation in subunit E as well as subunit A. Plant J. 28, 28–51.CrossRefGoogle Scholar
  3. 3.
    Pradedova E.V., Sapega Yu.G., Zheleznykh A.O., Ozolina N.V., Salyaev R.K. 2006. Effects of redox agents on the activity of tonoplast proton pumps in red beet roots. Biol. membrany (Rus.). 23(5), 364–369.Google Scholar
  4. 4.
    Ozolina N.V., Sapega Y.G., Pradedova E.V., Salyaev R. K. 2008. Effects of redox regulators on the hydrolytic activity of proton pumps in the tonoplast of red beet at different stages of plant development. Acad. Open Internet J. 22. ISSN 1311-4360.Google Scholar
  5. 5.
    Tarchevsky I.A. 2002. Signal’nye sistemy kletok rastenii (Signal Systems of Plant Cells). Moscow: Nauka.Google Scholar
  6. 6.
    Song L., Ding W., Zhao M., Sun B., Zhang L. 2006. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci. 171, 449–458.CrossRefGoogle Scholar
  7. 7.
    Tausz M., Sircelj H., Grill D. 2004. The glutathione system as a stress marker in plant ecophysiology: Is a stress-response concept valid? J. Exp. Bot. 55(404), 1955–1962.PubMedCrossRefGoogle Scholar
  8. 8.
    Dietz K.-J., Scheibe R. 2004. Redox regulation: An introduction. Physiologia Plantarum. 120, 1–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Salyayev R.K., Kuzevanov V.Ya., Khaptagayev S.B., Kopytchuk V.N. 1981. Isolation and purification of vacuoles and vacuolar membranes from plant cells. Fiziologiya rastenii (Rus.). 28, 1295–1305.Google Scholar
  10. 10.
    Bradford D.P. 1976. A rapid and sensitive method for the quantitation of protein utilising the principal of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  11. 11.
    Nurminsky V.N., Ozolina N.V., Nesterkina I.S., Kolesnikova E.V., Korzun A.M., Chernyshov M.Yu., Tikhonov N.V., Tarkov M.S., Salyaev, R.K. 2011. Stability of plant vacuolar membranes under osmotic stress and influence of redox agents. Biol. membrany (Rus.). 28(3), 224–229.Google Scholar
  12. 12.
    Ozolina N.V., Kolesnikova E.V., Nurminsky V.N., Nesterkina I.S., Dudareva L.V., Donskaya L.I., Salyaev, R.K. 2010. Influence of exogenous NO donator and variations in the Ca2+ ion content on transport activity related to tonoplast proton pumps in ontogenesis and under hyperosmotic stress. Biol. membrany (Rus.). 27(4), 354–358.Google Scholar
  13. 13.
    Dschida W., Bowman B. 1995. The vacuolar ATPase: Sulfite stabilization and mechanism of nitrate inactivation. J. Biol. Chem. 270, 1557–1563.PubMedCrossRefGoogle Scholar
  14. 14.
    Meister A., Anderson M. 1983. Glutathione. Annu. Rev. Biochem. 52, 711–760.PubMedCrossRefGoogle Scholar
  15. 15.
    Feng Y., Forgac M. 1992. Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle H+-ATPase upon modification by sulfhydryl reagents. J. Biol. Chem. 267, 5817–5822.PubMedGoogle Scholar
  16. 16.
    Maeshima M. 2000. Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta. 1465, 37–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Dietz K., Tavakoli N., Kluge C., Mimura T., Sharma S., Harris G., Chardonnens A., Golldack D. 2001. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp. Botany. 52(363), 1969–1980.CrossRefGoogle Scholar
  18. 18.
    Behzadipour M., Ratajczak R., Faist K., Pawlitschek P., Kluge M. 1998. Phenolic adaptation of tonoplast fluidity to growth temperature in the CAM plant Kalanchoe daigremontiana ham. et Per. is accompanied by changes in the membrane phospholipid and protein composition. J. Membr. Biol. 166(1), 61–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Los D.A. 2007. Perception of stress signals by biological membranes. In: Problemy regulyatsii v biologicheskikh sistemakh. Biofizicheskiye aspekty (Problems of Regulation in Biological Systems. Biophysical Aspects), Rubin, A.B., Ed., Moscow-Izhevsk: Regulatory and Chaotic Dynamics Research Center, Institute of Computer Studies, pp. 329–360.Google Scholar
  20. 20.
    Shi Q., Ding F., Wang X., Wei M. 2007. Exogenous nitric oxide protects cucumber roots against oxidative stress induced by salt stress. Plant Physiol. Biochem. 45, 542–550.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. V. Ozolina
    • 1
  • E. V. Kolesnikova
    • 1
  • V. N. Nurminsky
    • 1
  • I. S. Nesterkina
    • 1
  • L. V. Dudareva
    • 1
  • A. V. Tretyakova
    • 1
  • R. K. Salyaev
    • 1
  1. 1.Siberian Institute of Plant Physiology and BiochemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations