Advertisement

Interaction of bacterial lipopolysaccharides with host soluble proteins and polycations

  • I. M. YermakEmail author
  • V. N. Davydova
Reviews

Abstract

Lipopolysaccharides (LPS) are unique cell wall components of gram-negative bacteria. They represent amphiphilic biopolymeric compounds combining in a single molecule hydrophilic (O-specific chains, core oligosaccharide, etc.) and hydrophobic (lipid A) entities. LPS play a crucial role in various interactions between micro- and macroorganisms and display a broad range of biological activities including toxic activity and ability to activate immune cells. Biological activities of LPS are based on their ability to bind with high affinity to mammalian proteins, e.g., lipoproteins, bactericidal permeability-increasing proteins, lysozyme, etc., and thus to neutralize toxic effects of endotoxins. LPS are specific targets for antimicrobial polycationic compounds used in the therapy of bacterial infections. Studies of mechanisms of toxic effects of LPS culminated in the development of novel approaches to LPS neutralization. One of them is based on the use of compounds able to neutralize LPS toxicity at the expense of formation of macromolecular complexes with them. This approach is highly specific and has no effect on functional activity of antipathogenic defense mechanisms of the host. Interaction of LPS with various classes of cationic amphiphilic molecules including proteins, peptides, and polyamines was the subject of intensive studies in the past decade. Binding of cationic polymers is provided by electrostatic interactions between LPS and negatively charged phosphate and carboxylic groups of LPS localized in lipid A core. The present study is an overview of recently published data on different mechanisms of interactions of LPS with soluble proteins and polycations and modification of physiological activity of LPS.

Keywords

Chitosan Colistin Supplement Series Polymyxin Bacterial Lipopolysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rietschel, E.T., Brade, H., Holst O., Brade, L., Muller-Loennies, S., Mamat, U., Zahringer, U., Beckmann, F., Seydel, U., Brandenburg, K., Ulmer, A.J., Mattern, T., Heine, H., Schletter, J., Loppnow, H., Schonbeck, U., Flad, H.-D., Hauschilt, S., Schade, U.F., Padova, F.Di., Kusumoto, S., and Schumann, R.R., Bacterial Endotoxin: Chemical Constitution, Biological Recognition, Host Response, and Immunological Detoxification, Curr. Top. Microbiol. Immunol., 1996, vol. 216, pp. 39–81.PubMedGoogle Scholar
  2. 2.
    Jacobs, E.R., Overview of Mediators Affecting Pulmonary and Systemic Vascular Changes in Endotoxemia, Handbook of Endotoxin, Hinshaw, J.B., Ed., Amsterdam—New York—Oxford, Elsevier, 1985, vol. 2, pp. 1–10.Google Scholar
  3. 3.
    Brandenburg, K. and Wiese, A., Endotoxin: Relationships between Structure, Function and Activity, Curr. Top. Medicinal Chem., 2004, vol. 4, pp. 1127–1146.CrossRefGoogle Scholar
  4. 4.
    Mueller, M., Lindner, B., Dedrick, R., Scromn, A., and Seydel, U., Endotoxin: Physical Requirements for Cell Activation, J. Endotoxin Res., 2005, vol. 11, pp. 299–303.PubMedGoogle Scholar
  5. 5.
    Mueller, M., Lindner, B., Kusumoto, S., Fukases, K., Schromm, A.B., and Seydel, U., Aggregates Are the Biologically Active Units of Endotoxin, J. Biol. Chem., 2004, vol. 279, pp. 26307–26313.PubMedCrossRefGoogle Scholar
  6. 6.
    Ovodov, Yu.S., Khimiya immuniteta (Chemistry of Immunity), Syktyvkar, 1997, pp. 159.Google Scholar
  7. 7.
    Freudenberg, M.A., Meier-Dieter, U., Staehelin, T., and Galanos, C., Analysis of LPS Released from Salmonella abortus equi in Human Serum, Microb. Pathogen., 1991, vol. 10, pp. 93–104.CrossRefGoogle Scholar
  8. 8.
    Flegel, W.A., Wolpl, A., Mannel, D.N., and Norhoff, H., Inhibition of Endotoxin-Induced Activation of Human Monocytes by Human Lipoproteins, Infect. Immun., 1989, vol. 57, pp. 2237–2245.PubMedGoogle Scholar
  9. 9.
    Kaca, W., Roth, R., and Levin, J., Hemoglobin, a Newly Recognized Lipopolysaccharide (LPS)-Binding Protein That Enhances LPS Biological Activity, J. Biol. Chem., 1994, vol. 269, pp. 25078–25084.PubMedGoogle Scholar
  10. 10.
    Andra, J., Lohner, K., Blondelle, S.E., Jeralas, R., Moriyoni, I., Koch, M., Garidel, P., and Brandenburg, K., Enhancement of Endotoxin Neutralization by Coupling of a C12-Alkyl Chain to a Lactoferricin-Derived Peptide, Bichem. J., 2005, vol. 385, pp. 135–143.Google Scholar
  11. 11.
    Levels, J.H.M., Abraham, P.R., van den Ende, A., and van Deventer, S.J., Distribution and Kinetics of Lipoprotein-Bound Endotoxin, Infect. Immun., 2002, vol. 69, pp. 2821–2828.CrossRefGoogle Scholar
  12. 12.
    Brandenburg, K., Jurgens, G., Andra, J., Lindner, B., Koch, M., Blume, A., and Garide, P., Biophysical Characterization of the Interaction of High-Density Lipoprotein (HDL) with Endotoxins, Eur. J. Biochem., 2002, vol. 269, pp. 5972–5981.PubMedCrossRefGoogle Scholar
  13. 13.
    Viktorov, A.V., Medvedeva, N.V., Gladkaya, E.M., Morozkin, A.D., Bushmakina, N.G., and Yurkiv, V.A., Structure of a Low-Density Lipopolysaccharide-Lipoprotein Complex of Human Blood Plasma: Analytical Ultracentrifugation, 31P-NMR, EPR and Fluorescent Spectroscopic Studies, Biologicheskie Membrany (Rus.), 1989, vol. 6, no. 8, pp. 856–868.Google Scholar
  14. 14.
    Ulevitch, R.J., Jonston, A.R., and Weinstein, D.B., New Function for High Density Lipoproteins. Isolation and Characterization of a Bacterial Lipopolysaccharide-High Density Lipoprotein Complex Formed in Rabbit Plasma, J. Clin. Invest., 1981, vol. 67, pp. 827–837.PubMedCrossRefGoogle Scholar
  15. 15.
    Berbee, J.F., Havekes, L.M., and Rensen, P.C., Apolipoproteins Modulate the Inflammatory Response to Lipopolysaccharide, J. Endotoxin Res., 2005, vol. 11, pp. 97–103.PubMedGoogle Scholar
  16. 16.
    Netea, M.G., Demacker, P.N., Verver-Jannsen, T., Jacobs, L., Kullberg, B.J., Stalenhoef, A.F., and van der Meer, J.M., The Dense Low-Density Lipoprotein (LDL) Subfractions Are More Potent Than Buoyant LDL for Binding and Neutralization of Lipopolysaccharide, J. Endotoxin Res., 1997, vol. 4, pp. 409–413.Google Scholar
  17. 17.
    Pajkrt, D., Doran, J.W., van de Poll, T., Ten Cate, J.W., and van Deventer, S.J., Antiinflammatory Effects of Reconstituted High-Density Lipoprotein During Human Endotoxemia, J. Exp. Med., 1996, vol. 184, pp. 1601–1608.PubMedCrossRefGoogle Scholar
  18. 18.
    Thaveeratitham, P., Khovidhunkit, W., and Patumraj, S., High-Density Lipoproteins (HDL) Inhibit Endotoxin-Induced Leukocyte Adhesion on Endothelial Cells in Rats: Effect of the Acute-Phase HDL, Clin. Hemorheol. Microcirc., 2007, pp. 1–12.Google Scholar
  19. 19.
    Thaveeratitham, P., Plengpanich, W., Naen-Udorn, W., Patumraj, S., and Khovidhunkit, W., Effects of Human Apolipoprotein A-I on Endotoxin-Induced Leukocyte Adhesion on Endothelial Cells in Vivo and on the Growth of Escherichia coli in Vitro, J. Endotoxin Res., 2007, vol. 13, pp. 58–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, R.P., Lin, N.T., Chao, Y.F., Lin, C.C., Harn, H.J., and Chen, H.I., High-Density Lipoprotein Prevents Organ Damage in Endotoxemia, Res. Nurs Health, 2007, vol. 30, pp. 250–260.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu, A., Hinds, C.J., and Thiemermann, C., High-Density Lipoproteins in Sepsis and Septic Shock: Metabolism, Actions, and Therapeutic Applications, Shock, 2004, vol. 21, pp. 210–221.PubMedCrossRefGoogle Scholar
  22. 22.
    Sprong, T., Netea, M.G., van der Ley, P., Verver-Jansen, T.J., Jacobs, L.E., Stalenhoef, A., van der Meer, J.W., and van Deuren, M., Human Lipoproteins Have Divergent Neutralizing Effects on E. coli LPS, N. meningitides LPS, and Complete Gram-Negative Bacteria, J. Lipid Res., 2004, vol. 45, pp. 742–749.PubMedCrossRefGoogle Scholar
  23. 23.
    Tobias, P.S. and Ulevitch, R.J., Lipopolysaccharide Binding Protein and CD 14 in LPS-Dependent Macrophage Activation, Immunobiology, 1993, vol. 187, pp. 227–232.PubMedGoogle Scholar
  24. 24.
    Little, R.G., Kelner, D.N., Lim, E., Burke, D.J., and Conlon, P.J., Functional Domains of Recombinant Bactericidal Permeability Increasing Protein (rBPL23), J. Biol. Chem., 1994, vol. 269, pp. 1865–1872.PubMedGoogle Scholar
  25. 25.
    Fray, E.A., Miller, D.S., Jahr, T.G., Sundun, A., Bazil, V., Espevik, T., Finlay, B.B., and Wright, S.D., Soluble CD14 Participates in the Response of Cell to Lipopolysaccharide, J. Exp. Med., 1992, vol. 176, pp. 1665–1671.CrossRefGoogle Scholar
  26. 26.
    Yu, B. and Wtight, S.D., Catalytic Properties of Lipopolysaccharide (LPS) Binding Protein, J. Biol. Chem., 1996, vol. 271, pp. 4100–4105.PubMedCrossRefGoogle Scholar
  27. 27.
    Tobias, P.S., Soldau, K., Gegner, J.A., Mintz, D., and Ulevitgh, R.J., Lipopolysaccharide Binding Protein-Mediated Complexation of Lipopolysaccharide with Soluble CD14, J. Biol. Chem., 1995, vol. 270, pp. 10482–10488.PubMedCrossRefGoogle Scholar
  28. 28.
    Gegner, J.A., Ulevitch, R.J., and Tobias, P.S., Lipopolysaccharide (LPS) Signal Transduction and Clearance, J. Biol. Chem., 1995, vol. 270, pp. 5320–5325.PubMedCrossRefGoogle Scholar
  29. 29.
    Wurfel, M.M. and Wright, S.D., Lipopolysaccharide-Binding Protein and Soluble CD14 Transfer Lipopolysaccharide to Phospholipid Bilayers. Preferential Interaction with Particular Classes of Lipid, J. Immunol., 1997, vol. 158, pp. 3925–3934.PubMedGoogle Scholar
  30. 30.
    Helmann, D., Adachi, Y. Le., Ohno, N., Yadomae, T., Glauser, M.P., and Calandra, T., Role of Plasma, Lipopolysaccharide-Binding Protein, and CD14 in Response of Mouse Peritoneal Exudates Macrophages to Endotoxin, Infect. Immun., 2001, vol. 69, pp. 378–385.CrossRefGoogle Scholar
  31. 31.
    Schromm, A.B., Brandenburg, K., Loppnow, H., Moran, A.P., Koch, M.H., Rietschel, E.T., and Seydel, U., Biological Activities of Lipopolysaccharides Are Determined by the Shape of Their Lipid A Portion, Eur. J. Biochem. J., 2000, vol. 267, pp., 2008–2013.CrossRefGoogle Scholar
  32. 32.
    Roes, S., Mumm, F., Seydel, U., and Gutsmann, T., Localization of the Lipopolysaccharide-Binding Protein in Phospholipids Membranes by Atomic Force Microscopy, J. Biol. Chem., 2006, vol. 281, pp. 2757–2763.PubMedCrossRefGoogle Scholar
  33. 33.
    Huber, M., Kalis, C., Keck, S., Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Beutler, B., Galanos, C., and Freudenberg, M.A., R-Form LPS, the Master Key to the Activation of TLR4/MD-2-Positive Cells, Eur. J. Immunol., 2006, vol. 36, pp. 701–711.PubMedCrossRefGoogle Scholar
  34. 34.
    Kohara, J., Tsuneyoshi, N., Gauchat, J.F., Kimoto, M., and Fukudome, K., Preparation and Characterization of Truncated Human Lipopolysaccharide-Binding Protein in Escherichia coli, Protein Exp. Purif., 2006, vol. 49, pp. 276–283.CrossRefGoogle Scholar
  35. 35.
    Vesy, C.J., Kitchens, R.L., Wolfbauer, G., Albers, J.J., and Munford, R.S., Lipopolysaccharide-Binding Protein and Phospholipid Transfer Protein Release Lipopolysaccharides from Gram-Negative Bacterial Membranes, Infect. Immun., 2000, vol. 68, pp. 2410–2417.PubMedCrossRefGoogle Scholar
  36. 36.
    Wurfel, M.M., Kunitake, S.T., Lichenstein, H.S., Kane, J.P., and Wright, S.D., Lipopolysaccharide (LPS)-Binding Protein Is Carried on Lipoproteins and Acts As Cofactor in the Neutralization of LPS, J. Exp. Med., 1994, vol. 180, pp. 1025–1035.PubMedCrossRefGoogle Scholar
  37. 37.
    Wurfel, M.M. and Wright, S.D., Lipopolysaccharide-Binding Protein and Soluble CD14 Transfer Lipopolysaccharide to Phospholipid Bilayers. Preferential Interaction with Particular Classes of Lipid, J. Immunol., 1997, vol. 158, pp. 3925–3934.PubMedGoogle Scholar
  38. 38.
    Hailmann, E., Vasselon, T., Kelly, M., Busse, L.A., Hu, M.C., Lichenstein, H.S., Detmers, P.A., and Wright, S.D., Stimulation of Macrophages and Neutrophils by Complexes of Lipopolysaccharide and Soluble CD14, J. Immunol., 1996, vol. 156, pp. 4384–4390.Google Scholar
  39. 39.
    Hamann, L., Alexander, C., Stamme, C., Zahringer, U., and Schumann, R.R., Acute-Phase Concentrations of Lipopolysaccharide (LPS)-Binding Protein Inhibit Innate Immune Cell Activation by Different LPS Chemotypes via Different Mechanisms, Infect. Immun., 2005, vol. 73, pp. 193–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Scott, M.G., Vreugdenhil, A.C., Buurman, W.A., Hancock, R.E., and Gold, M., Cationic Antimicrobial Peptides Block the Binding of Lipopolysaccaharide (LPS) to LPS Binding Protein, J. Immunol., 2000, vol. 164, pp. 549–553.PubMedGoogle Scholar
  41. 41.
    Vreugdenhil, A.C., Rousseau, C.H., Hartung, T., Greve, J.W.M., Van’t Veer, C., and Buurman, W.A., Lipopolysaccharide (LPS)-Binding Protein Mediates LPS Detoxification by Chylomicrons, J. Immunol., 2003, vol. 170, pp. 1399–1405.PubMedGoogle Scholar
  42. 42.
    Massamiri, T., Tobias, P.S., and Curtiss, L.K., Structural Determinants for the Interaction of Lipopolysaccharide Binding Protein with Purified Density Lipoproteins: Role of Apolipoprotein A-1, J. Lipid Res., 1997, vol. 38, pp. 516–525.PubMedGoogle Scholar
  43. 43.
    Heinzelmann, M. and Bosshart, H., Heparin Binds to Lipopolysaccharide (LPS)-Binding Protein, Facilitates the Transfer of LPS to CD14, and Enhances LPS-Induced Activation of Peripheral Blood Monocytes, J. Immunol., 2005, vol. 174, pp. 2280–2287.PubMedGoogle Scholar
  44. 44.
    Elsbach, P. and Weiss, J., Role of the Bactericidal/Permeability-Increasing Protein in Host Defence, Curr. Opin. Immunol., 1998, vol. 10, pp. 45–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Iovin, N., Eastvold, J., Elsbach, P., Weiss, J.P., and Gioannini, T.L., The Carboxyl-Terminal Domain of Closely Related Endotoxin-Binding Proteins Determines the Target of Protein-Lipopolysaccharide Complexes, J. Biol. Chem., 2002, vol. 277, pp. 7970–7978.CrossRefGoogle Scholar
  46. 46.
    Elsbach, P. and Weiss, J., The Bactericidal Permeability-Increasing Protein (BPI), a Potent Element in Host-Defense against Gram-Negative Bacteria and Lipopolysaccharide, Immunobiology, 1993, vol. 187, pp. 417–429.PubMedGoogle Scholar
  47. 47.
    Kellogg, T.A., Lazaron, V., Wasiluk, K.R., and Dunn, D.L., Binding Specificity of Polymyxin B, BPI, LALF, and Anti-Deep Core/Lipid A Monoclonal Antibody to Lipopolysaccharide Partial Structures, Shock, 2001, vol. 15, pp. 124–129.PubMedCrossRefGoogle Scholar
  48. 48.
    Tobias, P.S., Soldau, K., Iovine, N.M., Elsbach, P., and Weiss, J., Lipopolysaccharide (LPS)-Binding Proteins BPI and LBP form Different Types of Complexes with LPS, J. Biol. Chem., 1997, vol. 272, pp. 18682–18685.PubMedCrossRefGoogle Scholar
  49. 49.
    Wiese, A., Reiners, J.O., Brandenburg, K., Kawahara, K., Zahringer, U., and Seydel, U., Planar Asymmetric Lipid Bilayers of Glycosphinglolipid or Lipopolysacharide on the One Side and Phospholipids on the Other: Membrane Potential, Porin Function, and Complement Activation, Biophys. J., 1996, vol. 70, pp. 321–329.PubMedCrossRefGoogle Scholar
  50. 50.
    Takayama, K., Din, Z.Z., Mukerjee, P., Cookt, P.H., and Kirkland, T.N., Physicochemical Properties of the Lipopolysaccharide Units That Activate B Lymphocytes, J. Biol. Chem., 1990, vol. 265, pp. 14023–14029.PubMedGoogle Scholar
  51. 51.
    Hejna, J. and Cameron, J.A., Effect on Particle Size of Solubilization of Wild-Type and Re Chemotype Lipopolysaccharides Solubilized with Bovine Serum Albumin and Triethylamine, Infect. Immun., 1978, vol. 19, pp. 187–193.PubMedGoogle Scholar
  52. 52.
    Jurgens, G., Muller, M., Gardiel, P., Koch, M.N.J., Nakakubo, H., Blume, A., and Brandenburg, K., Investigation into the Interaction of Recombinant Human Serum Albumin with Re-Lipopolysaccharide and Lipid A, J. Endotoxin Res., 2002, vol. 8, pp. 115–126.PubMedGoogle Scholar
  53. 53.
    Su, D.H., Roth, R.I., and Levin, L., Hemoglobin Infusion Augments the Tumor Necrosis Factor Response to Bacterial Endotoxin (Lipopolysaccharide) in Mice, Crit. Care Med., 1999, vol. 27, pp. 771–778.PubMedCrossRefGoogle Scholar
  54. 54.
    Whiteford, M., Spirig, A., Rudolph, A., Neville, L., Abdullah, F., Feuerstein, G., and Rabinovici, R., Effect of Liposome-Encapsulated Hemoglobin on the Development of Endotoxin-Induced Shock in the Rat, Shock, 1998, vol. 9, pp. 428–433.PubMedCrossRefGoogle Scholar
  55. 55.
    Yoshida, M., Roth, R.I., and Levin, J., The Effect of Cell-Free Hemoglobin on Intravascular Clearance and Cellular, Plasma, and Organ Distribution of Bacterial Endotoxin in Rabbits, J. Lab. Clin. Med., 1995, vol. 126, pp. 151–160.PubMedGoogle Scholar
  56. 56.
    Kaca, W., Roth, R., Vandegriff, K.D., Chi, Chen, Frans, A., Kuypers, R., Winslow, M., and Levin, J., Effect of Bacterial Endotoxin on Human Crosslinked and Native Hemoglobins, Biochemistry, 1995, vol. 34, pp. 11176–11185.PubMedCrossRefGoogle Scholar
  57. 57.
    Gazzano-Santoro, H., Meszaros, K., Birr, C., Carrol, S., Theofan, G., Horwitz, A.H., Lim, E., Aberle, S., Kasler, H., and Parent, J.B., Competition between rBPL23, a Recombinant Fragment of Bactericidal/Permeability-Increasing Protein, and Lipopolysaccharide (LPS)-Binding Protein for Binding to LPS and Gram-Negative Bacteria, Infect. Immun., 1994, vol. 62, pp. 1185–1191.PubMedGoogle Scholar
  58. 58.
    Elass-Rochard, E., Legrand, D., Salmon, V., Roseanu, A., Trif, M., Tobias, P.S., Mazurier, J., and Spik, G., Lactoferrin Inhibits the Endotoxin Interaction with CD14 by Competition with the Lipopolysaccharide-Binding Protein, Infect. Immun., 1998, vol. 66, pp. 486–491.PubMedGoogle Scholar
  59. 59.
    Roth, R., Wong, J.S., and Hamilton, R.L., Ultrastructural Changes in Bacterial Lipopolysaccharide Induced by Human Hemoglobin, J. Endotoxin Res., 1996, vol. 3, pp. 361–366.Google Scholar
  60. 60.
    Akhrem, A.A., Andreyuk, G.M., Kisel, M.A., and Kiselev, P.A., Hemoglobin Conversion to Hemichrome under the Influence of Fatty Acids, Biochim. et Biophys. Acta, 1989, vol. 99, pp. 191–194.Google Scholar
  61. 61.
    Roth, R., Wong, J.S., and Hamilton, R.L., Ultrastructural Changes in Bacterial Lipopolysaccharide Induced by Human Hemoglobin, J. Endotoxin Res., 1996, vol. 3, pp. 361–366.Google Scholar
  62. 62.
    Jurgens, G., Muller, M., Koch, M., and Brandenburg, K., Interaction of Hemoglobin with Enterobacterial Lipopolysaccharide and Lipid A: Physicochemical Characterization and Biological Activity, Eur. J. Biochem. J., 2001, vol. 268, pp. 4233–4242.CrossRefGoogle Scholar
  63. 63.
    Grenier, D., Leduc, A., and Mayrand, D., Interaction between Actinobacillus actinomycetemcomitans Lipopolysaccharide and Human Hemoglobin, FEMS Microbiol. Lett., 1997, vol. 151, pp. 77–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Kaca, W., Roth, R., Zliolkowski, A., and Levin, J., Human Hemoglobin Increases the Biological Activity of Bacterial Lipopolysaccharides in Activation of Limulas Amebocyte Lysate and Stimulation of Tissue Factor Production by Endothelial Cell in Vitro, J. Endotoxin Res., 1994, vol. 1, pp. 243–252.Google Scholar
  65. 65.
    Gorbenko, G.P., Resonance Energy Transfer Study of Hemoglobin Complexes with Model Phospholipids Membranes, Biophys. Chem., 1999, vol. 81, pp. 93–105.PubMedCrossRefGoogle Scholar
  66. 66.
    Takayama, K., Mitchell, D.H., Din, Z.Z., Mukerjee, P., Li, C., and Coleman, D.L., Monomeric Re Lipopolysaccharide from Escherichia coli Is More Active Than the Aggregated Form in the Limulus Amebocyte Lysate Assay and in Inducing Egr-1 mRNA in Murine Peritoneal Macrophages, J. Biol. Chem., vol. 269, pp. 2241–2244.Google Scholar
  67. 67.
    Archambault, M., Olivier, M., Foiry, B., Diarra, M.S., Paradis, S.E., and Jacques, M., Effect of Pig Hemoglobin Binding on Some Physical and Biological Properties of Actinobacillus pleuropneumoniae Lipopolysaccharide, J. Endotoxin Res., 1997, vol. 4, pp. 53–65.Google Scholar
  68. 68.
    Zuckerman, S.H., Evans, G.F., and Bryan, N., Interactions of Recombinant Hemoglobin (rHb 1.1) and Endotoxin in Vivo: Effects on Systemic Tumor Necrosis Factor and Interleukin-6 Levels in Lethal and Sublethal Murine Models of Endotoxemia, J. Lab. Clin. Med., 2001, vol. 130. P.427–435.CrossRefGoogle Scholar
  69. 69.
    Aguilera, O., Quiros, L.M., and Fierro, J.F., Transferrins Selectively Cause Ion Efflux through Bacterial and Artificial Membranes, FEBS Lett., 2003, vol. 548, pp. 5–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Caccavo, D., Afeltra, A., Pece, S., Giuliani, G., Freudenberg, M., Galanos, C., and Jirillo, E., Lactoferrin-Lipid A-Lipopolysaccharide Interaction: Inhibition by Anti-Human Lactoferrin Monoclonal Antibody AGM 10.14, Infect. Immun., 1999, vol. 67, pp. 4668–4672.PubMedGoogle Scholar
  71. 71.
    van Berkel, P.H.C., Greerts, M.E.J., van Veen, H.A., Mericskay, M., de Boer, H.A., and Nuijens, J.H., N-Terminal Stretch Arg(2), Arg(3), Arg(4) and Arg(5) of Human Lactoferrin Is Essential for Binding to Heparin, Bacterial Lipopolysaccharide, Human Lysozyme, and DNA, Biochem. J., 1997, vol. 328, pp. 145–151.PubMedGoogle Scholar
  72. 72.
    Zhang, C., Mann, D., and Tsai, C., Neutralization of Endotoxin in Vitro and in Vivo by a Human Lactoferrin-Derived Peptide, Infect. Immun., 1999, vol. 67, pp. 1353–1358.PubMedGoogle Scholar
  73. 73.
    Ochoa, T.J., Brown, E.L., Guion, C.E., Chen, J.Z., McMahon, R.J., and Cleary, T.G., Effect of Lactoferrin on Enteroaggregative E. coli (EAEC), Biochem. Cell Biol., 2006, vol. 84, pp. 369–376.PubMedCrossRefGoogle Scholar
  74. 74.
    Talukder, M.J. and Harada, E., Bovine Lactoferrin Protects Lipopolysaccharide-Induced Diarrhea Modulating Nitric Oxide and Prostaglandin E2 in Mice, Can. J. Physiol. Pharmacol., 2007, vol. 85, pp., 200–208.PubMedCrossRefGoogle Scholar
  75. 75.
    Baveye, S., Elass, E., Mazurier, J., and Lagrand, D., Lactoferrin Inhibits the Binding of Lipopolysaccharides to L-Selectin and Subsequent Production of Reactive Oxygen Species by Neutrophils, FEBS Lett., 2000, vol. 469, pp. 5–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Japelj, B., Pristovsek, P., Majerle, A., and Jerala, R., Strucrtural Origin of Endotoxin Neutralization and Antimicrobial Activity of a Lactoferrin-Based Peptide, J. Biol.Chem., 2005, vol. 280, pp. 16955–16961.PubMedCrossRefGoogle Scholar
  77. 77.
    Tanida, N., Ohno, N., Adachi, Y., Matsuura, M., Nakano, M., Kiso, M., Hasegawa, A., and Yadomae, T., Binding of Lysozyme with Synthetic Monosaccharide Lipid A Analogue, GLA60, Biol. Pharm. Bull., 1993, vol. 16, pp. 288–292.PubMedGoogle Scholar
  78. 78.
    Kurasawa, T., Takada, K., Ohno, N., and Yadomae, T., Effects of Murine Lysozyme on Lipopolysaccharide-Induced Biological Activities, FEMS Immunol. Med. Microbiol., 1996, vol. 13, pp. 293–301.PubMedCrossRefGoogle Scholar
  79. 79.
    Wiese, A., Brandenburg, K., Lindner, B., Schromn, A.B., Carrol, S.F., Rietschekl, E.T., and Seydel, U., Mechanisms of Action of the Bacterial/Permeability-Increasing Protein BPI on Endotoxin and Phospholipids Monolayers and Aggregates, Biochem., 1997, vol. 36, pp. 10301–10310.CrossRefGoogle Scholar
  80. 80.
    Ohno, N. and Morrison, D., Effect of Lipopolysaccharide Chemotype Strucrure on Binding and Inactivation of Hen Egg Lysozyme, Eur. J. Biochem., 1989, vol. 186, pp. 621–627.PubMedCrossRefGoogle Scholar
  81. 81.
    Ohno, N. and Morrison, D., Lipopolysaccharide Interaction with Lysozyme, J. Biol. Chem., 1989, vol. 264, pp. 4434–4441.PubMedGoogle Scholar
  82. 82.
    Brandenburg, K., Koch, M.H.J., and Seydel, U., Biophysical Characterizations of Lysozyme Binding to LPS Re and Lipid A, Eur. J. Biochem., 1998, vol. 258, pp. 686–695.PubMedCrossRefGoogle Scholar
  83. 83.
    Ohno, N., Tanida, N., and Yadomae, T., Characterization of Complex Formation between Lipopolysaccharide and Lysozyme, Carbohydr. Res., 1991, vol. 214, pp. 115–130.PubMedCrossRefGoogle Scholar
  84. 84.
    Nodake, Y., Iwasaki, K., and Yamasaki, N., Interactions of A Lysozyme-Monomethoxypolyethylene Glycol Conjugate with Lipopolysaccharides and Lipid Bilayers and Effects of Conjugate on Gram-Negative Bacteria, Biosci. Biotechnol. Biochem., 2002, vol. 66, pp. 1848–1852.PubMedCrossRefGoogle Scholar
  85. 85.
    Ioffe, V. and Gorbenko, G.P., Lysozyme Effect on Structural State of Model Membranes As Revealed by Pyrene Excimerization Studies, Biophys. Chem., 2005, vol. 22, pp. 199–204.CrossRefGoogle Scholar
  86. 86.
    Thomas, C.J. and Surolia, A., Kinetic of the Interaction of Endotoxin with Polymyxin B and Its Analogs: A Surface Plasmon Resonance Analysis, FEBS Lett., 1999, vol. 445, pp. 420–424.PubMedCrossRefGoogle Scholar
  87. 87.
    Manterola, L., Moriyon, I., Moreno, E., Sola-Landa, A., Weiss, D.S., Koch, M.H.J., Howe, J., Brandenburg, K., and Lopez-Goni, I., The Lipopolysaccharide of Brucella. abortus BVRS/BVRR Mutants Contains Lipid A Modifications and Has Higher Affinity to Bactericidal Cationic Peptides, J. Bacteriol., 2005, vol. 187, pp. 5631–5639.PubMedCrossRefGoogle Scholar
  88. 88.
    Fujihara, Y., Lei, M-G., and Morrison, D.C., Characterization of Specific Binding of a Human Immunoglobulin M Monoclonal Antibody to Lipopolysaccharide and Its Lipid A Domain, Infect. Immun., 1993, vol. 61, pp. 910–918.PubMedGoogle Scholar
  89. 89.
    Brade, L., Holst, O., and Brade, H., An Artificial Glycoconjugate Containing the Bisphosphorylated Glucosamine Disaccharide Backbone of Lipid A Binds Monoclonal Antibodies, Infect. Immun., 1993, vol. 61, pp. 4514–4517.PubMedGoogle Scholar
  90. 90.
    Natanson, C., Hoffman, W.D., Suffredini, A.F., Eichacker, P.Q., and Danner, R.L., Selected Treatment Strategies for Septic Shock Based on Proposed Mechanisms of Pathogenesis, Ann. Untern. Med., 1994, vol. 120, pp. 771–783.Google Scholar
  91. 91.
    Wakabayashi, G., Gelfand, J.A., Burke, J.F., Thompson, R.C., and Dinarello, C.A., A Specific Receptor Antagonist for Interleukin-1 Prevents Escherichia coli-Induced Shock in Rabbits, FASEB J., 1991, vol. 5, pp. 338–343.PubMedGoogle Scholar
  92. 92.
    Grachev, S.V., Astashkin, E.I., Prokhorenko, I.R., Prikhod’ko, A.Z., Egorova, N.D., and Novikova, I.R., A Lipopolysaccharide of Photosynthesizing Bacteria Neutralizes Inhibiting Effects of Endotoxin on the Cytochrome P-450 System of C57BL/6 Mice in Vivo, Doklady AN RF (Rus.), 1998, vol. 362, pp. 277–279.Google Scholar
  93. 93.
    Vorobeva, E.V., Krasikova, I.N., and Solov’eva, T.F., Influence of Lipopolysaccharides and Lipids A from Some Marine Bacteria on Spontaneous and Escherichia coli LPS-Induced TNF-Alpha Release from Peripheral Human Blood Cells, Biochemistry (Mosc.) (Rus.), 2006, vol. 71, pp. 759–766.CrossRefGoogle Scholar
  94. 94.
    Bennett-Guerrero, E., McIntosh, T.J., Barclay, G.R., Snyder, D.S., Gibbs, R.J., Mythen, M.G., and Poxton, I.R., Preparation and Preclinical Evaluation of a Novel Liposomal Complete Core Lipopolysaccharide Vaccine, Infect. Immun., 2000, vol. 68, pp. 6202–6208.PubMedCrossRefGoogle Scholar
  95. 95.
    Velucchi, M., Rustici, A., Meazza, X., Villa, P., Ghezzi, P., Tsai, C.-M., and Porro, M., A Model of Neisseria meningitides Vaccine Based on LPS Micelles Detoxified by Synthetic Anti-Endotoxin Peptides, J. Endotoxin Res., 1997, vol. 4, pp. 261–272.Google Scholar
  96. 96.
    Storm, D.R. and Rosenthal, K., Polymyxin and Related Peptides Antibiotics, Annu. Rev. Biochem. J., 1977, vol. 46, pp. 723–763.CrossRefGoogle Scholar
  97. 97.
    Bhor, V.M., Thomas, C.J., Surolia, N., and Surolia, A., Polymyxin B: An Ode to an Old Antidote for Endotoxic Shock, Mol. Biosystems., 2005, vol. 382, pp. 213–222.CrossRefGoogle Scholar
  98. 98.
    Brandenburg, K., Arraiza, M.D., Lehwark-Ivetot, G., Moriyon, I., and Zahringer, U., The Interaction of Rough and Smooth Form Lipopolysaccharides with Polymyxins As Studied by Titration Calorimetry, Therm. Acta., 2002, vol. 382, pp. 53–61.CrossRefGoogle Scholar
  99. 99.
    David, S.A., Wiese, S.K., Ulmer, A., Lindner, A.J., Brandenburg, B., Seydel, K., Rietshel, U., Sonesson, E.T., and Balaram, A., Characterization of the Interactions of a Polycationic, Amphiphilic, Terminally Branched Oligopeptide with Lipid A and Lipopolysaccharide from the Deep Rough Mutant of Salmonella Minnesota, J. Endotoxin Res., 1996, vol. 3, pp. 369–379.Google Scholar
  100. 100.
    Kahle, C., Koch, P.J., Durr, W., Kastowsky, M., and Bradaczek, H., Active Penetration of Charged Peptides into Monomolecular Films of Deep Rough Mutant Lipopolysaccharide, Thin Solid Films, 1996, vols. 284/285, pp. 802–804.CrossRefGoogle Scholar
  101. 101.
    Koch, P.J., Frank, J., Schuler, J., Kahle, C., and Bradaczek, H., Thermodynamics and Structural Studies of the Interaction of Polymyxin B with Deep Rough Mutant Lipopolysaccharides, J. Colloid. Interface Sci., 1999, vol. 213, pp. 557–564.PubMedCrossRefGoogle Scholar
  102. 102.
    Srimal, S., Surolia, N., Balasubramanian, S., and Surolia, A., Titration Calorimetric Studies to Elucidate the Specificity of the Interactions of Polymyxin B Lipopolysaccharides and Lipid A, Biochem. J., 1996, vol. 315, pp. 679–686.PubMedGoogle Scholar
  103. 103.
    Kaca, W., Radzitjewska-Lebrech, M., and Bhal, U., Effect of Polymyxins on the Lipopolysaccharide-Defective Mutants of Proteus mirabilis, Microbios., 1990, vol. 61, pp. 23–32.PubMedGoogle Scholar
  104. 104.
    Helander, I.M., Kuo, Y., Kilpelhinen, I., Kostiamen, R., Lindner, B., Nummila, K., Sugiyama, T., and Yokochi, T., Characterization of Lipopolysaccharides of Polymyxin-Resistant and Polymyxin-Sensitive Klebsiella pneumoniae 03, Eur. J. Biochem., 1996, vol. 237, pp. 272–278.PubMedCrossRefGoogle Scholar
  105. 105.
    Seltmann, G., Lindner, B., and Helst, O., Resistance of Serratia marcescens to Polymyxin B: A Comparative Investigation of Two S-Form Lipopolysaccharides Obtained from A Sensitive and Resistant Variant of Strain 111, J. Endotoxin Res., 1996, vol. 3, pp. 497–504.Google Scholar
  106. 106.
    Nummila, K., Kilpelhinen, I., Zahringer, U., Vaara, M., and Helander, I., Lipopolysaccharides of Polymyxin B-Resistant Mutants of Escherichia coli Are Extensively Substituted by 2-Aminoethyl Pyrophosphate and Contain Aminoarabimose in Lipid A, Mol. Microbiol., 1995, vol. 16, pp. 271–278.PubMedCrossRefGoogle Scholar
  107. 107.
    Anisimov, A.P., Dentovskaya, S.V., Titareva, G.M., Bakhteeva, I.V., Shaikhutdinova, R.Z., Balakhonov, S.V., Lindner, B., Kocharova, N.A., Senchenkova, S.N., Holst, O., Pier, G.B., and Knirel, Y.A., Interspecies and Temperature-Dependent Variations in Susceptibility of Yersinia pestis to the Bactericidal Action of Serum and to Polymyxin B, Infect. Immun., 2005, vol. 73, pp. 7324–7331.PubMedCrossRefGoogle Scholar
  108. 108.
    Swierzko, A., Kirikae, T., Kirikae, F., Hiratra, M., Cedzynski, M., Ziolkowski, A., Hirai, Y., Kusumoto, S., Yokochi, T., and Nakano, M., Biological Activities of Lipopolysaccharides of Proteus spp. and Their Interactions with Polymyxin B and an 18-kDa Cationic Antimicrobial Protein (CAP18)-Derived Peptide, J. Med. Microbiol., 2000, vol. 49, pp. 127.Google Scholar
  109. 109.
    Rahamans, S., Mukhejee, J., Chakrabarti, A., and Pal, S., Decreased Membrane Permeability in a Polymyxin B-Resistant Escherichia coli Mutant Exhibiting Multiple Resistance to Beta-Lactams as Well as Aminoglycosides, FEMS Microbiol. Lett., 1998, vol. 161, pp. 249–254.Google Scholar
  110. 110.
    Yethon, J.A., Guenn, J.S., Emsl, R.K., Miller, S.I., Laroche, L., Malo, D., and Whitfield, C., Salmonella emigrlow Serovar Typhimurium waaP Mutants Show Increased Susceptibility to Polymyxin and Loss of Virulence in Vivo, Infect. Immun., 2000, vol. 68, pp. 4485–4491.PubMedCrossRefGoogle Scholar
  111. 111.
    Pristovsek, P. and Kidric, J., Solution Structure of Polymyxins B and E Effect of Binding to Lipopolysaccharide: An MMR and Molecular Modeling Study, J. Med. Chem., 1999, vol. 42, pp. 4604–4613.PubMedCrossRefGoogle Scholar
  112. 112.
    Yin, N., Marshall, R.L., Matheson, S., and Savage, P.B., Synthesis of Lipid A Derivatives and Their Interactions with Polymyxin B and Polymyxin Nonapeptide, J. Am. Chem. Soc., 2003, vol. 125, pp. 2426–2435.PubMedCrossRefGoogle Scholar
  113. 113.
    Tsubery, H., Yaakov, H., Cohen, S., Giterman, T., Matityahou, A., Fridkin, M., and Ofek, I., Neopeptide Antibiotics That Function as Opsonins and Membrane-Permeabilizing Agents for Gram-Negative Bacteria, Antimocrob. Agents Chemother., 2005, vol. 49, pp. 3122–3128.CrossRefGoogle Scholar
  114. 114.
    Kodama, M., Tani, T., Hanasawa, K., Hirata, K., Hirasawa, H., Oda, S., Otsuka, T., Yamamoto, Y., Kanesaka, S., Takahashi, Y., Maekawa, K., Wakabayashi, Y., Tamakuma, S., and Sugimoto, T., Treatment of Sepsis by Plasma Endotoxin Removal: Hemoperfusion Using a Polymyxin-B Immobilized Column, J. Endotoxin Res., 1997, vol. 4, pp. 293–300.Google Scholar
  115. 115.
    Senturk, S., Evalution of Anti-Endotoxic Effects of Polymyxin-E (Colistin) in Dogs with Naturally Occurred Endotoxic Shock, J. Vet. Pharmacol. Ther., 2005, vol. 28, pp. 57–61.PubMedCrossRefGoogle Scholar
  116. 116.
    Arabski, M., Wasik, S., Dworecki, K., and Kaca, W., Laser Interferometric Determination of Ampicillin and Colistin Transfer Through Cellulose Biomembrane in the Presence of Proteus vulgaris O25 Lipopolysaccharide, J. Membr. Sci., 2007, vol. 299, pp. 268–275.CrossRefGoogle Scholar
  117. 117.
    Drabick, J.J., Bhattacharjee, A.K., Hoover, D.L., Siber, G.E., Morales, V.E., Young, L.D., Brown, S.L., and Cross, A.S., Covalent Polymyxin B Conjugate with Human Immunoglobulin G As Antiendotoxin Reagent, Antimicrob. Agents Chemother., 1998, vol. 42, pp. 583–588.PubMedGoogle Scholar
  118. 118.
    Hanora, A., Plieva, F., Hedstrom, M., Galaev, I.Yu, and Mattiasson, Bo., Capture of Bacterial Endotoxins Using a Supermacroporous Monolithic Matrix with Immobilized Polyethyleneimine, Lysozyme or Polymyxin B, J. Biotechnol., 2005, vol. 118, pp. 421–433.PubMedCrossRefGoogle Scholar
  119. 119.
    Nakamura, T., Kawagoe, Y., Suzuki, T., Shoji, H., Ueda, Y., Kobayashi, N., and Koide, H., Change in Plasma Interleukin-18 by Direct Hemoperfusion with Polymyxin BImmobilized Fiber in Patients with Septic Shock, Blood Purif., 2005, vol. 23, pp. 417–420.PubMedCrossRefGoogle Scholar
  120. 120.
    Vasil’eva, G.I., Bespalova, I.A., Kiseleva, A.K., Verkine, L.M., Doroshenko, E.P., and Pyatibratov, A.M., Effect of Modification of a Plague Microbial Lipopolysaccharide on Neutrophil-Inducing Activity, Mikrobiologicheskii Zhurnal (Rus.), 1997, vol. 59, pp. 61–67.Google Scholar
  121. 121.
    Zasloff, M., Antimicrobial Peptides of Multicellular Organisms, Nature, 2002, vol. 415, pp. 389–395.PubMedCrossRefGoogle Scholar
  122. 122.
    Schroder-Born, H., Willumeit, R., Brandenburg, K., and Andra, J., Molecular Basis for Membrane Selectivity of NK-2, a Potent Peptide Antibiotic Derived from NK-Lysin, Biochim. et Biophys. Acta, 2003, vol. 1612, pp. 164–171.CrossRefGoogle Scholar
  123. 123.
    Andra, J., Koch, M., Bartels, R., and Brandenburg, K., Biophysical Characterization of Endotoxin Inactivation by NK-02, an Antimicrobial Peptide Derived from Mammalian NK-Lysin, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 1593–1599.PubMedCrossRefGoogle Scholar
  124. 124.
    Andersson, M., Giorard, R., and Cazenave, P., Interaction of NK-Lysine, a Peptide Produced by Cytolytic Lymphocytes, with Endotoxin, Infect. Immun., 1999, vol. 67, pp. 201–205.PubMedGoogle Scholar
  125. 125.
    Andra, J., Lamata, M., de Tejada, G.M., Bartels, R., Koch, M.H., and Brandenburg, K., Cyclic Antimicrobial Peptides Based on Limulus Anti-Lipopolysaccharide Factor for Neutralization of Lipopolysaccharide, Biochem. Pharm., 2004, vol. 68, pp. 1297–1307.PubMedCrossRefGoogle Scholar
  126. 126.
    David, S.A., Silverstein, R., Amura, C., Kielian, T., and Morrison, D.C., Lipopolyamines: Novel Antiendotoxin Compounds That Reduce Mortality in Experimental Sepsis Caused by Gram-Negative Bacteria, Antimicrob. Agents Chemother., 1999, vol. 43, pp. 912–919.PubMedGoogle Scholar
  127. 127.
    Blagbrough, I.S., Geall, A.J., and David, S.A., Lipopolyamines Incorporating the Tetraamine Spermine, Bound to an Alkyl Chain, Sequester Bacterial Lipopolysaccharide, Bioorg. Med. Chem., 2000, vol. 10, pp. 1959–1962.CrossRefGoogle Scholar
  128. 128.
    Sakata, M., Kawari, T., Ohkuma, K., Ihara, H., and Hirayama, C., Reduction of Endotoxin Contamination of Various Crude Vaccine Materials by Gram-Negative Bacteria Using Aminated Poly (γ-Methyl-L-Glutamate) Spherical Particles, Biol. Pharm. Bull., 1993, vol. 16, pp. 1065–1068.PubMedGoogle Scholar
  129. 129.
    Ding, J.L., Zhu Yong, and Ho Bow, High-Performance Affinity Capture-Removal of Bacterial Pyrogen from Solutions, J. Chromatogr., 2001, vol. 759, pp. 237–246.CrossRefGoogle Scholar
  130. 130.
    Kumar, M.N. Muzzarelli, R.A., Muzzarelli, C., Sashiva, H., and Domb, A.J., Chitosan Chemistry and Pharmacceutical Persspective, Chem. Rev., 2004, vol. 104, pp. 6017–6084.PubMedCrossRefGoogle Scholar
  131. 131.
    Singla, A.K. and Chawla, M., Chitosan: Some Pharmaceutical and Biological Aspects, an Update, J. Pharm. Pharmacol., 2001, vol. 53, pp. 1047–1067.PubMedCrossRefGoogle Scholar
  132. 132.
    Thanou, M., Florea, B.I., Geldof, M., Junginger, H.E., and Borchard, G., Quaternized Chitosan Oligomers As Novel Gene Delivery Vectors in Epithelial Cell Lines, Biomaterials, 2002, vol. 23, pp. 153–159PubMedCrossRefGoogle Scholar
  133. 133.
    Yermak, I.M., Gorbach, V.I., Polyakova, A.M., Astrinan, O.S., Lukyanov, P.A., Solovyeva, T.F., Maleev, V.V., and Ovodov, Yu.S., A Water-Soluble Lipopolysaccharide-Chitosan Complex and Its Effect on Platelet Aggregation, Biologicheskie Membrany (Rus.), 1994, vol. 11, pp. 496–500.Google Scholar
  134. 134.
    Davydova, V.N., Yermak, I.M., Gorbach, V.I., and Solovyeva, T.F., The Effect of Temperature on Interaction of a Yersinia pseudotuberculosis Lipopolysaccharide with Chitosan, Biologicheskie Membrany (Rus.), 1999, vol. 16, pp. 42–48.Google Scholar
  135. 135.
    Davydova, V.N., Yermak, I.M., Gorbach, V.I., Krasikova, I.N., and Solovyeva, T.F., Interactions of Bacterial Endotoxins with Chitosan. Effect of Endotoxin Structure, Chitosan Molecular Mass, and Ionic Strength of the Solution on the Formation of the Complex, Biokhimiya (Rus.), 2000, vol. 65, pp. 1278–1287.Google Scholar
  136. 136.
    Davydova, V.N., Naberezhnykh, G.A., Yermak, I.M., Gorbach, V.I., and Solovyeva, T.F., Determination of Binding Constants of LPS of Different Structure with Chitosan Biokhimiya (Rus.), 2006, vol. 75, pp. 300–347.Google Scholar
  137. 137.
    Yermak, I.M., Davydova, V.N., Gorbach, V.I., Berdyshev, E.L., Kuznetsova, T.A., Ivanushko, I.A., Gazha, A.K., Smolina, T.P., Zaporozhets, T.S., and Solovyeva, T.F., Modification of Biological Activity of Lipopolysaccharide in the Complex with Chitosan, Bulleten’ Eksperimental’noi Biologii i Meditsiny (Rus.), 2004, vol. 137, pp. 430–434.Google Scholar
  138. 138.
    Yermak, I.M., Reunov, A.V., Lapshina, L.A., Davydova, V.N., and Solovyeva, T.F., Electron-Microscopic Study of LPS from Gram-Negative Bacteria and Their Complexes with Chitosan, Biologicheskie Membrany (Rus.), 2005, vol. 22, pp. 117–122.Google Scholar
  139. 139.
    Yermak, I.M., Naberezhnykh, G.A., Solov’eva, T.F., Drozdov, A.L., and Ovodov, Yu.S., Effect of Temperature on Supramolecular Structure and Antigenic Activity of Yersinia pseudotuberculosis Endotoxin, J. Biochem. Organization, 1994, vol. 1, pp. 295–304.Google Scholar
  140. 140.
    Yermak, I.M., Davidova, V.N., Gorbach, V.I., Luk’yanov, P.A., Solov’eva, T.F., Ulmer, A.J., Buwitt-Beckmann, U., Rietschel, E.T., and Ovodov, Yu.S., Forming and Immunological Properties of Some Lipopolysaccharide-Chitosan Complexes, Biochimie, 2006, vol. 88, pp. 23–30.PubMedCrossRefGoogle Scholar
  141. 141.
    Zavodinsky, V.G., Gnidenko, A.A., Davydova, V.N., and Yermak, I.M., Computer Modeling of Interaction of Bacterial Endotoxin with a Chitosan Polycation, Khimiya I komp’yuternoe modelirovanie.Butlerovskie soobshcheniya (Rus.), 2003, no. 2, pp. 12–14.Google Scholar
  142. 142.
    Polyakova, A.M., Yermak, I.M., Astrina, O.S., Maleyev, V.V., Gorbach, V.I., and Solovyeva, T.F., Effects of Biologically Active Natural Polysaccharides on Functional Activity of Platelets in Experimental Endotoxemia, Infektsionniye Bolezni (Rus.), 2003, vol. 1, pp. 80–82.Google Scholar
  143. 143.
    Polyakova, A.M., Astrina, O.S., Bakhtina, Yu.A., Maleev, V.V., Barabanova, A.O., and Yermak, I.M., Possibility of Correction of Functional State of Human Trombocytes with Natural Polysaccharides in Patients with Alimentary Toxic Infections and in Experimental Endotoxinamia, Infektsionnye Bolezni (Rus.), 2005, vol. 3, pp. 44–46.Google Scholar
  144. 144.
    Khasina, E.I., Sgrebneva, M.N., Davydova, V.N., and Yermak, I.M., Chitosan and Nonspecific Resistance, Efferentnaya Terapiya (Rus.), 2006, vol. 12, pp. 32–35.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Pacific Institute of Bioorganic ChemistryFar Eastern Branch of Russian Academy of SciencesVladivostokRussia

Personalised recommendations