Advertisement

Cell and Tissue Biology

, Volume 12, Issue 6, pp 491–495 | Cite as

Analysis of NAD and NAD-Dependent Protein Deacetylation in Mouse Tissues

  • L. V. Solovjeva
  • A. V. Panchenko
  • K. A. Shabalin
  • K. B. Nerinovski
  • A. P. Yakimov
  • E. A. Gubareva
  • M. P. Svetlova
  • O. S. Mudrak
  • M. A. Khodorkovskiy
  • A. A. NikiforovEmail author
  • V. A. KulikovaEmail author
Article
  • 25 Downloads

Abstract

Nicotinamide adenine dinucleotide (NAD) plays a key role in the vital metabolic and regulatory processes in mammals. Disturbance of the NAD level regulation is associated with the development of such serious diseases as pellagra, neurodegenerative and cardiovascular disorders, diabetes, cancer and others. This paper presents an experimental approach that allows to determine the amount of NAD+ in mouse tissues using NMR spectroscopy, as well as the level of NAD+-dependent deacetylation of proteins in the cytosol and mitochondria.

Keywords:

NAD NMR spectroscopy deacetylation immunoblotting 

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Russian Science Foundation, project no. 16-14-10240.

COMPLIANCE WITH ETHICAL STANDARDS

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All experiments with animals were carried out in Petrov National Medical Research Center of Oncology in accordance with the protocol approved by the local ethics committee (abstract no. 2/197 of record no. 18 of the local ethics committee) and corresponding to the standards for working with laboratory animals.

REFERENCES

  1. 1.
    Belenky, P., Bogan, K.L., and Brenner, C., NAD+ metabolism in health and disease, Trends Biochem. Sci., 2007, vol. 32, pp. 12–19.CrossRefGoogle Scholar
  2. 2.
    Braidy, N., Guillemin, G.J., Mansour, H., Chan-Ling, T., Poljak, A., and Grant, R., Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats, PLoS One, 2011, vol. 6. e19194.CrossRefGoogle Scholar
  3. 3.
    Canto, C., Houtkooper, R.H., Pirinen, E., Youn, D.Y., Oosterveer, M.H., Cen, Y., Fernandez-Marcos, P.J., Yamamoto, H., Andreux, P.A., Cettour-Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A.A., and Auwerx, J., The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity, Cell Metabolism, 2012, vol. 15, pp. 838–847.CrossRefGoogle Scholar
  4. 4.
    Chiarugi, A., Dolle, C., Felici, R., and Ziegler, M., The NAD metabolome—a key determinant of cancer cell biology, Nature Rev. Cancer, 2012, vol. 12, pp. 741–752.CrossRefGoogle Scholar
  5. 5.
    Fliegert, R., Gasser, A., and Guse, A.H., Regulation of calcium signalling by adenine-based second messengers, Biochem. Soc., 2007, vol. 35, pp. 109–114.CrossRefGoogle Scholar
  6. 6.
    Hamity, M.V., White, S.R., Walder, R.Y., Schmidt, M.S., Brenner, C., and Hammond, D.L., Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats, Pain, 2017, vol. 158, pp. 962–972.CrossRefGoogle Scholar
  7. 7.
    Kulikova, V., Shabalin, K., Nerinovski, K., Dolle, C., Niere, M., Yakimov, A., Redpath, P., Khodorkovskiy, M., Migaud, M.E., Ziegler, M., and Nikiforov, A., Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells, J. Biol. Chem., 2015, vol. 290, pp. 27124–27137.CrossRefGoogle Scholar
  8. 8.
    Kulikova, V.A., Gromyko, D.V., and Nikiforov, A.A., The role of NAD in signaling processes in mammals, Biochemistry (Moscow), 2018. doi 10.1134/S0006297918070040Google Scholar
  9. 9.
    Magni, G., Orsomando, G., Raffelli, N., and Ruggieri, S., Enzymology of mammalian NAD metabolism in health and disease, Front. Biosci., 2008, vol. 13, pp. 6135–6154.CrossRefGoogle Scholar
  10. 10.
    Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B., and Guillemin, G.J., Age-associated changes in oxidative stress and NAD+ metabolism in human tissue, PLoS One, 2012, vol. 7. e42357.CrossRefGoogle Scholar
  11. 11.
    Mukherjee, S., Chellappa, K., Moffitt, A., Ndungu, J., Dellinger, R.W., Davis, J.G., Agarwal, B., and Baur, J.A., Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration, Hepatology, 2017, vol. 65, pp. 616–630.CrossRefGoogle Scholar
  12. 12.
    Nikiforov, A., Kulikova, V., and Ziegler, M., The human NAD metabolome: functions, metabolism and compartmentalization, Critical Rev. Biochem. Mol. Biol., 2015, vol. 50, pp. 284–297.CrossRefGoogle Scholar
  13. 13.
    Trammell, S.A., Weidemann, B.J., Chadda, A., Yorek, M.S., Holmes, A., Coppey, L.J., Obrosov, A., Kardon, R.H., Yorek, M.A., and Brenner, C., Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice, Sci. Reports, 2016, vol. 6, pp. 26 933.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Solovjeva
    • 1
  • A. V. Panchenko
    • 2
  • K. A. Shabalin
    • 3
  • K. B. Nerinovski
    • 4
  • A. P. Yakimov
    • 3
  • E. A. Gubareva
    • 2
  • M. P. Svetlova
    • 1
  • O. S. Mudrak
    • 1
  • M. A. Khodorkovskiy
    • 5
  • A. A. Nikiforov
    • 1
    • 5
    Email author
  • V. A. Kulikova
    • 1
    • 5
    Email author
  1. 1.Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian FederationSt. PetersburgRussia
  3. 3.Konstantinov Petersburg Nuclear Physics Institute of the National Research Center Kurchatov InstituteGatchinaRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations