Advertisement

Cell and Tissue Biology

, Volume 12, Issue 6, pp 437–447 | Cite as

Endoglin Expression in Non-tumor and Tumor Cells of Different Origin

  • M. P. Samoilovich
  • A. A. Pinevich
  • N. L. Vartanyan
  • I. V. Smirnov
  • I. Yu. Krutetskaya
  • A. Yu. Stolbovaya
  • O. A. Shashkova
  • I. V. Gryazeva
  • M. A. Berlina
  • T. D. Smirnova
  • V. B. Klimovich
Article
  • 5 Downloads

Abstract

The transmembrane protein endoglin (CD105) is a component of the receptor complex for TGF-β family growth factors. It is expressed primarily in endothelial cells, mesenchymal stromal cells, and early hematopoietic precursors. The density of CD105 on the membrane of endothelial cells increases upon their proliferation. A soluble endoglin form (sEng) is produced by a cleavage of an extracellular fragment from CD105, performed by the matrix metalloproteinase MMP-14. sEng blood level serves as an indicator of angiogenesis during the progression of some tumors. The contribution of tumor cells into the sEng pool remains unknown. We investigated the expression of CD105, production of sEng, as well as the mRNA level of two splice-variants of endoglin and mmp-14 genes using a collection of 43 cultures of tumorous and normal cells of different histological origin. Over half of the tumor cell lines and normal stromal cells contained cell populations expressing the membrane-bound endoglin. Cytoplasmic endoglin with unknown function was found in cells of three tumor lines. In all cell cultures, the mRNA expression of L-endoglin splice-variant prevailed over the expression of S-endoglin. We have investigated, for the first time, the formation of sEng in the stromal and tumor cells, and revealed the endothelial cells as the main source of sEng. Normal stromal cells and the majority of CD105+ tumor cells produce only low levels of sEng. Among the tumor cell lines, the highest sEng production was detected in the MeWo melanoma cells, that are characterized by the highest activity of mmp-14 gene.

Keywords:

cell lines mesenchymal stromal cells tumor cells endothelium endoglin L-endoglin S-endo-glin CD105 mmp-14 gene 

Notes

REFERENCES

  1. 1.
    Altomonte, M., Montagner, R., Fonsatti, E., Colizzi, F., Cattarossi, I., Brasoveanu, L.I., Nicotra, M.R., Cattelan, A., Natali, P.G., and Maio, M., Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma, Br. J. Cancer, 1996, vol. 74, pp. 1586–1591.CrossRefGoogle Scholar
  2. 2.
    Bernabeu, C., Lopez-Novoa, J.M., and Quintanilla, M., The emerging role of TGF-β superfamily coreceptors in cancer, Biochim. Biophys. Acta, 2009, vol. 1792, pp. 954–973.CrossRefGoogle Scholar
  3. 3.
    Blanko, F.J., Grande, M.T., Langa, C., Oujo, B., Velasco, S., Rodriges-Barbero, A., Perez-Gomez, E., Qintanilla, M., López-Novoa, J., and Bernabue, C., S-Endoglin expression is induced in senescent endothelial cells and contri-butes to vascular pathology, Circ. Res., 2008, vol. 103, pp. 1383–1392.CrossRefGoogle Scholar
  4. 4.
    Blanco, F.J., Ojeda-Fernandez, L., Aristorena, M., Gallardo-Vara, E., Benguria, A., Dopazo, A., Langa, C., Botella, L.M., and Bernabeu, C., Genome-wide transcriptional and functional analysis of endoglin isoforms in the human promonocytic cell line U937, J. Cell. Physiol., 2015, vol. 230, pp. 947–958.CrossRefGoogle Scholar
  5. 5.
    Brewer, C.A., Setterdahl, J.J., Li, M.J., Johnston, J.M., Mann, J.L., and McAsey, M.E., Endoglin expression as a measure of microvessel density in cervical cancer, Obstet. Gynecol., 2000, vol. 96, pp. 224–228.Google Scholar
  6. 6.
    Edgell, C.J., McDonald, C.C., and Graham, J.B., Permanent cell line expressing human factor VIII-related antigen established by hybridization, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, pp. 3734–3737.CrossRefGoogle Scholar
  7. 7.
    Erdem, O., Taskiran, C., Onan, M.A., Erdem, M., Guner, H., and Ataoglu, O., CD105 expression is an independent predictor of survival in patients with endometrial cancer, Gynecol. Oncol., 2006, vol. 103, pp. 1007–1011.CrossRefGoogle Scholar
  8. 8.
    Fonsatti, E. and Maio, M., Highlights on endoglin (CD105): from basic findings towards clinical applications in human cancer, J. Transl. Med., 2004, vol. 2, p. 18.CrossRefGoogle Scholar
  9. 9.
    Fonsatti, E., Altomonte, M., Nicotra, M.R., Natali, P.G., and Maio, M., Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels, Oncogene, 2003, vol. 22, pp. 6557–6563.CrossRefGoogle Scholar
  10. 10.
    Haruta, Y. and Seon, B.K., Distinct human leukemia-associated cell surface glycoprotein GP160 defined by monoclonal antibody SN6, Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, pp. 7898–7902.CrossRefGoogle Scholar
  11. 11.
    Henry, L.A., Johnson, D.A., Sarrió, D., Lee, S., Quinlan, P.R., Crook, T., Thompson, A.M., Reis-Filho, J.S., and Isacke, C.M., Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome, Oncogene, 2011, vol. 30, pp. 1046–1058.CrossRefGoogle Scholar
  12. 12.
    Kassouf, W., Ismail, H.R., Aprikian, A.G., and Chevalier, S., Whole-mount prostate sections reveal differential endoglin expression in stromal, epithelial, and endothelial cells with the development of prostate cancer, Prostate Cancer Prostatic Dis., 2004, vol. 7, pp. 105–110.CrossRefGoogle Scholar
  13. 13.
    Kiseleva, L.N., Kartashev, A.V., Vartanyan, N.L., Pine-vich, A.A., and Samoilovich, M.P., A172 and T98G cell line characteristics, Cell Tissue Biol., 2016, vol. 10, no. 5, pp. 341–348.CrossRefGoogle Scholar
  14. 14.
    Kiseleva, L.N., Kartashev, A.V., Vartanyan, N.L., Pine-vich, A.A., Filatov, M.V., and Samoilovich, M.P., Characterization of new human glioblastoma cell lines, Cell Tissue Biol., 2018, vol. 12, no. 1, pp. 1–6.CrossRefGoogle Scholar
  15. 15.
    Kumar, S., Pan, C.C., Bloodworth, J.C., Nixon, A.B., Theuer, C., Hoyt, D.G., and Lee, N.Y., Antibody-directed coupling of endoglin and MMP-14 is a key mechanism for endoglin shedding and deregulation of TGF-β signaling, Oncogene, 2014, vol. 33, pp. 3970–3979.CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Jovanovic, B., Pins, M., Lee, C., and Bergan, R.C., Over expression of endoglin in human prostate cancer suppresses cell detachment, migration and invasion, Oncogene, 2002, vol. 21, pp. 8272–8281.CrossRefGoogle Scholar
  17. 17.
    Nolan, T., Hands, R.E., and Bustin, S.A., Quantification of mRNA using real-time RT-PCR, Nat. Protoc., 2006, vol. 1, pp. 1559–1582.CrossRefGoogle Scholar
  18. 18.
    Oliveira, M.V., Fraga, C.A., Barros, L.O., Pereira, C.S., Santos, S.H., Basile, J.R., Gomez, R.S., Guimarães, A.L., and De-Paula, A.M., High expression of S100A4 and endoglin is associated with metastatic disease in head and neck squamous cell carcinoma, Clin. Exp. Metastasis, 2014, vol. 31, pp. 639–649.CrossRefGoogle Scholar
  19. 19.
    Oxmann, D., Held-Feindt, J., Stark, A.M., Hattermann, K., Yoneda, T., and Mentlein, R., Endoglin expression in me-tastatic breast cancer cells enhances their invasive phenotype, Oncogene, 2008, vol. 27, pp. 3567–3575.CrossRefGoogle Scholar
  20. 20.
    Paauwe, M., ten Dijke, P., and Hawinkels, L.J., Endoglin for tumor imaging and targeted cancer therapy, Expert Opin. Ther. Targets, 2013, vol. 17, pp. 421–435.CrossRefGoogle Scholar
  21. 21.
    Pal, K., Pletnev, A.A., Dutta, S.K., Wang, E., Zhao, R., Baral, A., Yadav, V.K., Aggarwal, S., Krishnaswamy, S., Alkharfy, K.M., Chowdhury, S., Spaller, M.R., and Mukhopadhyay, D., Inhibition of endoglin–GIPC interaction inhibits pancreatic cancer cell growth, Mol. Cancer Ther., 2014, vol. 13, pp. 2264–2275.CrossRefGoogle Scholar
  22. 22.
    Pérez-Gómez, E., Del Castillo, G., Santibáñez, J.-F., López-Novoa, J., Bernabéu, C., and Quintanilla, M., The role of the TGF-β coreceptor endoglin in cancer, Sci. World J., 2010, vol. 10, pp. 2367–2384.CrossRefGoogle Scholar
  23. 23.
    Pinevich, A.A., Samoilovich, M.P., Shashkova, O.A., Vartanyan, N.L., Polysalov, V.N., Kiseleva, L.N., Kartashev, A.V., Aizenshtadt, A.A., and Klimovich, V.B., Characteristics of mesenchymal stromal cells isolated from patients with breast cancer, Bull. Exp. Biol. Med., 2014, vol. 157, pp. 666–672.CrossRefGoogle Scholar
  24. 24.
    Pinevich, A.A., Terekhina, L.A., and Samoilovich, M.P., Comparative analysis of mesenchymal stem cells from visceral and subcutaneous adipose tissue, Ross. Immunol. Zh., 2015, vol. 9, no. 18, pp. 83–86.Google Scholar
  25. 25.
    Postiglione, L., Di, Domenico, G., Caraglia, M., Marra, M., Giuberti, G., Del Vecchio, L., Montagnani, S., Macri, M., Bruno, E.M., Abbruzzese, A., and Rossi, G., Differential expression and cytoplasm/membrane distribution of endoglin (CD105) in human tumour cell lines: implications in the mo-dulation of cell proliferation, Int. J. Oncol., 2005, vol. 26, pp. 1193–1201.Google Scholar
  26. 26.
    Quackenbush, E.J. and Letarte, M., Identification of se-veral cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies, J. Immunol., 1985, vol. 134, pp. 1276–1285.Google Scholar
  27. 27.
    Quintanilla, M., del Castillo, G., Sánchez-Blanco, E., Martín-Villar, E., Valbuena-Diez, A.C., Langa, C., Pérez-Gómez, E., Renart, J., and Bernabéu, C., A suppressor role for soluble endoglin in cancer, Cancer Cell Microenviron., 2015, vol. 2, p. e706.Google Scholar
  28. 28.
    Smirnov, I.V., Griazeva, I.V., Samoilovich, M.P., Terekhi-na, L.A., Pinevich, A.A., Krylova, A.A., Krutetskaia, I.Iu., Nikolsky, N.N., and Klimovich, V.B., Production and characterization of monoclonal antibodies against human endoglin, Cell Tissue Biol., 2015, vol. 9, no. 6, pp. 473–482.Google Scholar
  29. 29.
    Smirnov, I.V., Gryazeva, I.V., Samoylovich, M.P., Terekhi-na, L.A., Pinevich, A.A., Shashkova, O.S., Krutetskaia, I.Y., Sokolov, D.I., Selkov, S.A., Nikolskiy, N.N., and Klimo-vich, V.B., Different pairs of monoclonal antibodies detect variable amounts of soluble endoglin in human blood plasma, Immunochem. Immunopathol., 2016, vol. 2, p. 121.Google Scholar
  30. 30.
    Takahashi, N., Haba, A., Matsuno, F., and Seon, B.K., Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and sy-nergy between anti-endoglin antibody and cyclophosphamide. Cancer Res., 2001a, vol. 61, pp. 7846–7854.Google Scholar
  31. 31.
    Takahashi, N., Kawanishi-Tabata, R., Haba, A., Tabata, M., Haruta, Y., Tsai, H., and Seon, B.K., Association of serum endoglin with metastasis in patients with colorectal, breast, and other solid tumors, and suppressive effect of chemotherapy on the serum endoglin, Clin. Cancer Res., 2001b, vol. 7, pp. 524–532.Google Scholar
  32. 32.
    Tobar, N., Avalos, M.C., Méndez, N., Smith, P.C., Ber-nabeu, C., Quintanilla, M., and Martínez, J., Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells, Carcinogenesis, 2014, vol. 35, pp. 1770–1779.CrossRefGoogle Scholar
  33. 33.
    Velasco, S., Alvarez-Muñoz, P., Pericacho, M., Dijke, P.T., Bernabéu, C., López-Novoa, J.M., and Rodriguez-Barbero, A., L- and S-endoglin differentially modulate TGFβ1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts, J. Cell Sci., 2008, vol. 121, pp. 913–919.CrossRefGoogle Scholar
  34. 34.
    Wang, J.M., Kumar, S., Pye, D., van Agthoven, A.J., Krupinski, J., and Hunter, R.D., A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues, Int. J. Cancer, 1993, vol. 54, pp. 363–370.CrossRefGoogle Scholar
  35. 35.
    Zakrzewski, P.K., Cygankiewicz, A.I., Mokrosiński, J., Nowacka-Zawisza, M., Semczuk, A., Rechberger, T., and Krajewska, W.M., Expression of endoglin in primary endometrial cancer, Oncology, 2011, vol. 81, pp. 243–250.CrossRefGoogle Scholar
  36. 36.
    Zijlmans, H.J., Fleuren, G.J., Hazelbag, S., Sier, C.F., Dreef, E.J., Kenter, G.G., and Gorter, A., Expression of endoglin (CD105) in cervical cancer, Br. J. Cancer, 2009, vol. 100, pp. 1617–1626.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. P. Samoilovich
    • 1
    • 2
  • A. A. Pinevich
    • 1
    • 2
  • N. L. Vartanyan
    • 1
  • I. V. Smirnov
    • 1
  • I. Yu. Krutetskaya
    • 1
  • A. Yu. Stolbovaya
    • 1
  • O. A. Shashkova
    • 1
  • I. V. Gryazeva
    • 1
  • M. A. Berlina
    • 1
  • T. D. Smirnova
    • 3
  • V. B. Klimovich
    • 1
  1. 1.Russian Research Center for Radiology and Surgical Technologies Named after GranovSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Research Institute of InfluenzaSt. PetersburgRussia

Personalised recommendations