Advertisement

Cell and Tissue Biology

, Volume 12, Issue 2, pp 135–145 | Cite as

Quantum Dots based on Indium Phosphide (InP): the Effect of Chemical Modifications of the Organic Shell on Interaction with Cultured Cells of Various Origins

  • I. K. Litvinov
  • T. N. Belyaeva
  • A. V. Salova
  • N. D. Aksenov
  • E. A. Leontieva
  • A. O. Orlova
  • E. S. Kornilova
Article
  • 30 Downloads

Abstract

CdSe and CdTe-based semiconductor fluorescent nanocrystals, also called quantum dots (QDs), attract the attention of biologists due to their wide range of emission in a visible light interval, high fluorescence quantum yield and photostability. However, their application is limited because of possible toxicity of cadmium. Indeed, there is a probability of metal leakage from QDs cores as a result of damage of both inorganic and organic layers of shells covering QDs. An alternative to cadmium QDs could be nanostructures having as a core, for example, non-toxical indium phosphide (InP), also emitting in the visible region of the spectrum. At present, there is few works on the use of these particles in biology. In this study, a comparative analysis of the spectral-luminescent properties of two InP/ZnS-QDs samples coated with PEG carrying- COOH or -NH2 functional groups was performed. The obtained data were compared with the characteristics of CdSe/ZnS-QDs coated with PEG. The photophysical properties of all QDs in aqueous solution corresponded to the information claimed by manufacturers, but the fluorescence quantum yield of InP-based nanoparticles was found to be lower than that of CdSe-QDs. We also show that the photoluminescence of all types of QDs at pH 4.0 was lower than at pH 7.4, while the decrease in fluorescence intensity was minimal in the case of QDs-PEG-COOH. Studying the uptake of all three types of QDs by J774 macrophages, we found that the fluorescence spectra of internalized QDs do not change in comparison with those in solution. All three types of QDs after 24 hours of incubation were accumulated in the cells, but while QDs-NH2 and QDs without reactive groups were detected mainly in vesicular-like discrete structures, the QDs-COOH were diffusely distributed throughout the cytoplasm. This fact indicates different mechanisms of interaction with cell membranes. In nonphagocytic HeLa cells all types of QDs behaved similarly, but the overall level of cells fluorescence was much lower. This may be due to both reduced nonspecific uptake and possible quenching of QDs fluorescence in acidic endolysosomes. Cytofluorimetric analysis of propidium iodide accumulation showed that after 24 hours incubation with all studied types of QDs as well as in control (no QDs), the proportion of dead HeLa cells did not exceed 10%. Thus, it has been demonstrated that non-toxic InP-based QDs can be used as an effective tool for biological research.

Keywords

CdSe and InP quantum dots photoluminescence macrophages J774 HeLa cells pH 

Abbreviation

PL

photoluminescence

QDs

quantum dots

PEG

polyethylene glycol

PI

propidium iodide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldana, J., Wang, Y.A., and Peng, X., Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols, J. Am. Chem. Soc., 2001, vol. 123, pp. 8844–8850.CrossRefPubMedGoogle Scholar
  2. Aldana, J., Lavelle, N., Wang, Y.J., and Peng, X.G., Sizedependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals, J. Am. Chem. Soc., 2005, vol. 127, pp. 2496–2504.CrossRefPubMedGoogle Scholar
  3. Avellini, T., Amelia, M., Credi, A., and Silvi, S., Effect of protons on CdSe and CdSe–ZnS nanocrystals in organic solution, Langmuir, 2013, vol. 29, pp. 13352–13358.CrossRefPubMedGoogle Scholar
  4. Belyaeva, T.N., Salova, A.V., Leontieva, E.A., Mozhenok, T.P., Kornilova, E.S., and Krolenko, S.A., Untargeted quantum dots in confocal microscopy of living cells, Cell Tissue Biol., 2009, vol. 3, no. 6, pp. 551–558.CrossRefGoogle Scholar
  5. Bentzen, E.L., Tomlinson, I.D., Mason, J., Gresch, P., Warnement, M.R., Wright, D., Sanders-Bush, E., Blakely, R., and Rosenthal, S.J., Surface modification to reduce nonspecific binding of quantum dots in live cell assays, Bioconjug. Chem., 2005, vol. 16, pp. 1488–1494.CrossRefPubMedGoogle Scholar
  6. Biju, V., Makita, Y., Sonoda, A., Yokoyama, H., Baba, Y., and Ishikawa, M., Temperature-sensitive photoluminescence of CdSe quantum dot clusters, J. Phys. Chem. B, 2005, vol. 109, pp. 13899–13905.CrossRefPubMedGoogle Scholar
  7. Boldt, K., Bruns, O.T., Gaponik, N., and Eychmüller, A., Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers, J. Phys. Chem. B, 2006, vol. 110, pp. 1959–1963.CrossRefPubMedGoogle Scholar
  8. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Semiconductor nanocrystals as fluorescent biological labels, Science, 1998, vol. 281, pp. 2013–2016.CrossRefPubMedGoogle Scholar
  9. Cho, S.J., Maysinger, D., Jain, M., Roder, B., Hackbarth, S., and Winnik, F.M., Long-term exposure to CdTe quantum dots causes functional impairments in live cells, Langmuir, 2007, vol. 23, pp. 1974–1980.CrossRefPubMedGoogle Scholar
  10. Clift, M.J., Rothen-Rutishauser, B., Brown, D.M., Duffin, R., Donaldson, K., Proudfoot, L., Guy, K., and Stone, V., The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line, Toxicol. Appl. Pharmacol., 2008, vol. 232, pp. 418–427.CrossRefPubMedGoogle Scholar
  11. Collinet, C., Stoter, M., Bradshaw, C.R., Samusik, N., Rink, J.C., Kenski, D., Habermann, B., Buchholz, F., Henschel, R., Mueller, M.S., Nagel, W.E., Fava, E., Kalaidzidis, Y., and Zerial, M., Systems survey of endocytosis by multiparametric image analysis, Nature, 2010, vol. 464, pp. 243–249.CrossRefPubMedGoogle Scholar
  12. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R, Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B, 1997, vol. 101, pp. 9463–9475.CrossRefGoogle Scholar
  13. Derfus, A.M., Chan, W.C.W., and Bhatia, S.N., Probing the cytotoxicity of semiconductor quantum dots, Nano Lett., 2004, vol. 4, pp. 11–18.CrossRefPubMedGoogle Scholar
  14. Durisic, N., Godin, A.G., Walters, D., Grütter, P., Wiseman, P.W., and Heyes, C.D., Probing the “dark” fraction of core–shell quantum dots by ensemble and single particle pH-dependent spectroscopy, ACS Nano, 2011, vol. 5, pp. 9062–9073.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Esteve-Turrillas, F.A. and Abad-Fuentes, A., Applications of quantum dots as probes in immunosensing of small-sized analytes, Biosens. Bioelectron., 2013, vol. 41, pp. 12–29.CrossRefPubMedGoogle Scholar
  16. Gao, X., Chan, W., and Nie, S., Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding, J. Biomed. Opt., 2002, vol. 7, pp. 532–537.CrossRefPubMedGoogle Scholar
  17. Hardman, R., A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ. Health Perspect., 2006, vol. 114, pp. 165–172.CrossRefPubMedGoogle Scholar
  18. Hines, D.A. and Kamat, P.V., Recent advances in quantum dot surface chemistry, ACS Appl. Mat. Interfaces, 2014, vol. 6, pp. 3041–3057.CrossRefGoogle Scholar
  19. Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y.F., Ohta, T., Yasuhara, M., Suzuki, K., and Yamamoto, K., Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification, Nano Lett., 2004, vol. 4, pp. 2163–2169.CrossRefGoogle Scholar
  20. Kim, S., Fisher, B., Eisler, H.J., and Bawendi, M., Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures, Am. Chem. Soc., 2003, vol. 125, pp. 11466–11467.CrossRefGoogle Scholar
  21. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Muñoz Javier, A., Gaub, H.E., Stölzle, S., Fertig, N., and Parak, W.J., Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett., 2005, vol. 5, pp. 331–338.CrossRefPubMedGoogle Scholar
  22. Lee, J., Ji, K., Kim, J., Park, C., Lim, K.H., Yoon, T.H., and Choi, K., Acute toxicity of two CdSe/ZnSe quantum dots with different surface coating in Daphnia magna under various light conditions, Environ. Toxicol., 2010, vol. 25, pp. 593–600.CrossRefPubMedGoogle Scholar
  23. Liu, B.R., Winiarz, J.G., Moon, J.-S., Lo, S.-Y., Huang, Y.-W., Aronstam, R.S., and Lee, H.-J., Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides, Colloids Surfaces B: Biointerfaces, 2013, vol. 111, pp. 162–170.CrossRefPubMedGoogle Scholar
  24. Liu, Y.S., Sun, Y., Vernier, P.T., Liang, C.H., Chong, S.Y., and Gundersen, M.A., PH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells, J. Phys. Chem. C. Nanomater. Interfaces, 2007, vol. 111, pp. 2872–2878.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mo, D., Hu, L., Zeng, G., Chen, G., Wan, J., Yu, Z., Huang, Z., He, K., Zhang, C., and Cheng, M., Cadmiumcontaining quantum dots: properties, applications, and toxicity, Appl. Microbiol. Biotechnol., 2017, vol. 101, pp. 2713–2733.CrossRefPubMedGoogle Scholar
  26. Muller, J., Lupton, J.M., Lagoudakis, P.G., Schindler, F., Koeppe, R., Rogach, A.L., Feldmann, J., Talapin, D.V., and Weller, H., Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement, Nano Lett., 2005, vol. 5, pp. 2044–2049.CrossRefPubMedGoogle Scholar
  27. Rosenthal, S.J., Chang, J.C., Kovtun, O., McBride, J.R., and Tomlinson, I.D., Biocompatible quantum dots for biological applications, Chem. Biol., 2011, vol. 18, pp. 10–24.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ryman-Rasmussen, J.P., Riviere, J.E., and MonteiroRiviere, N.A., Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes, J. Invest. Dermatol., 2006, vol. 127, pp. 143–153.CrossRefPubMedGoogle Scholar
  29. Smith, A.M., Duan, H., Mohs, A.M., and Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug Deliver. Rev., 2008, vol. 60, pp. 1226–1240.CrossRefGoogle Scholar
  30. Soenen, S.J., Manshian, B.B., Aubert, T., Himmelreich, U., Demeester, J., De Smedt, S.C., Hens, Z., and Braeckmans, K., Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging, Chem. Res. Toxicol., 2014, vol. 27, pp. 1050–1059.CrossRefPubMedGoogle Scholar
  31. Tomasulo, M., Yildiz, I., and Raymo, F.M., PH-sensitive quantum dots, J. Phys. Chem., 2006, vol. B 110, pp. 3853–3855.CrossRefGoogle Scholar
  32. Tonti, S., Di Cataldo, S., Bottino, A., and Ficarra, E., An automated approach to the segmentation of Hep-2 cells for the indirect immunofluorescence ANA test, Comput. Med. Imaging Graph., 2015, vol. 40, pp. 62–69.CrossRefPubMedGoogle Scholar
  33. Uyeda, H.T., Medintz, I.L., Jaiswal, J.K., Simon, S.M., and Mattoussi, H., Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores, Am. Chem. Soc., 2005, vol. 127, pp. 3870–3878.CrossRefGoogle Scholar
  34. Walker, G.W., Sundar, V.C., Rudzinski, C.M., Wun, A.W., Bawendi, M.G., and Nocera, D.G., Quantum-dot optical temperature probes, Appl. Phys. Lett., 2003, vol. 83, pp. 3555–3557.CrossRefGoogle Scholar
  35. Wuister, S.F., van Houselt, A., Donega, C.D.M., Vanmaekelbergh, D., and Meijerink, A., Temperature antiquenching of the luminescence from capped CdSe quantum dots, Angew. Chem. Int. Ed., 2004, vol. 43, pp. 3029–3033.CrossRefGoogle Scholar
  36. Yang, S., Zhao, P., Zhao, X., Qua, L., and Lai, X., InP and Sn:InP based quantum dot sensitized solar cells, J. Mater. Chem. A, 2015, vol. 3, pp. 21922–21929.CrossRefGoogle Scholar
  37. Young, K.T., Wang, Y., Roy, I., Rui, H., Swihart, M.T., Law, W.C., Kwak, S.K., Ye, L., Liu, J., Mahajan, S.D., and Reynolds, J.L., Preparation of quantum dot/drug nanoparticles formulations for traceable targeted delivery and therapy, Theranostics, 2012, vol. 2, pp. 681–694.CrossRefGoogle Scholar
  38. Yu, W.W., Qu, L., Guo, W., and Peng, X., Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 2003, vol. 15, pp. 2854–2860.Google Scholar
  39. Zhang, Y., Pan, H., Zhang, P., Gao, N., Lin, Y., Luo, Z., Li, P., Wang, C., Liu, L., Pang, D., Cai, L., and Ma, Y., Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional groupassociated endocytic pathways, Nanoscale, 2013, vol. 5, pp. 5919–5929.CrossRefPubMedGoogle Scholar
  40. Zhong, W., Zhang, C., Gao, Q., and Li, H., Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots, Microchim. Acta, 2012, vol. 176, pp. 101–107.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. K. Litvinov
    • 1
    • 2
  • T. N. Belyaeva
    • 1
  • A. V. Salova
    • 1
  • N. D. Aksenov
    • 1
  • E. A. Leontieva
    • 1
  • A. O. Orlova
    • 2
  • E. S. Kornilova
    • 1
    • 2
    • 3
    • 4
  1. 1.Institute of Cytology of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations