Advertisement

Cell and Tissue Biology

, Volume 11, Issue 1, pp 51–58 | Cite as

Quantification of mitochondrial morphology in situ

  • V. A. Popkov
  • E. Yu. Plotnikov
  • L. D. Zorova
  • I. B. Pevzner
  • D. N. Silachev
  • V. A. Babenko
  • S. S. Jankauskas
  • S. D. Zorov
  • D. B. Zorov
Article
  • 50 Downloads

Abstract

The structural organization of mitochondria reflects their functional status and largely is an index of cell viability. The indirect parameter to assess the functional state of mitochondria in cells is the degree of their fragmentation, i.e., the ratio of long or branched mitochondrial structures to round mitochondria. Such evaluations requires an approach that allows to create an integral pattern of the three-dimensional organization of mitochondrial reticulum using confocal images of mitochondria stained with a fluorescent probe. In the present study, we tested three approaches to analyzing the structural architecture of mitochondria under normal conditions and fission induced by oxidative stress. We revealed that, while the most informative is a three-dimensional reconstruction based on series of confocal images taken along the Z-dimension, with some restrictions it is plausible to use more simple algorithms of analysis, including one that uses unitary twodimensional images. Further improvement of these methods of image analysis will allow more comprehensive study of mitochondrial architecture under normal conditions and different pathological states. It may also provide quantification of a number of mitochondrial parameters determining the morphofunctional state of mitochondria—primarily, their absolute and relative volumes—and give additional information on threedimensional organization of the mitochondrion.

Keywords

mitochondria fragmentation confocal microscopy 3D modeling 

Abbreviations

IR

ischemia–reoxygenation

SkQ1

10-(6′-plasto-quinonyl) decyltriphenylphosphonium

TMRE

tetramethylrhodamine ethyl ester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakeeva, L.E., Barskov, I.V., Egorov, M.V., Isaev, N.K., Kapelko, V.I., Kazachenko, A.V., Kirpatovskii, V.I., Kozlovsky, S.V., Lakomkin, V.L., Levina, S.V., Pisarenko, O.I., Plotnikov, Yu.P., Saprunova, V.B., Serebryakova, L.I., Skulachev, M.V., Stelmashook, E.V., Studneva, I.M., Tskitishvili, O.V., Vasilieva, A.K., Viktorov, I.V., Zorov, D.B., and Skulachev, V.P., Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and agerelated diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke), Biochemistry (Moscow), 2008, vol. 73, no. 12, pp. 1288–1299.CrossRefGoogle Scholar
  2. Bakeeva, L.E., Chentsov, Y.S., and Skulachev, V.P., Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle, Biochim. Biophys. Acta—Bioenergetics, 1978, vol. 501, pp. 349–369.CrossRefGoogle Scholar
  3. Benek, O., Aitken, L., Hroch, L., Kuca, K., Gunn-Moore, F., and Musilek, K., A direct interaction between mitochondrial proteins and amyloid-beta peptide and its significance for the progression and treatment of Alzheimer’s disease, Curr. Med. Chem., 2015, vol. 22, pp. 1056–1085.CrossRefGoogle Scholar
  4. Bolte, S. and Cordelires, F.P., A guided tour into subcellular colocalization analysis in light microscopy, J. Micr., 2006, vol. 224, pp. 213–232.CrossRefGoogle Scholar
  5. Cenini, G. and Voos, W., Role of mitochondrial protein quality control in oxidative stress-induced neurodegenerative diseases, Curr. Alzheimer Res., 2016, vol. 13, pp. 164–173.CrossRefPubMedGoogle Scholar
  6. Chan, D.C., Mitochondrial fusion and fission in mammals, Ann. Rev. Cell Dev. Biol., 2006, vol. 22, pp. 79–99.CrossRefGoogle Scholar
  7. Frederic, J. and Chevremont, M., Recherches sur les chondriosomes de cellules vivantes par la microscopie et la microcinematographie en contraste de phase (1re partie), Arch. Biol. (Liege), 1952, vol. 63, pp. 109–131.Google Scholar
  8. Friedland-Leuner, K., Stockburger, C., Denzer, I., Eckert, G.P., and Müller, W.E., Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease, Progr. Mol. Biol.Transl. Sci., 2014, vol. 127, pp. 183–210.CrossRefGoogle Scholar
  9. Herbert, S., Ortmann, W., Lautenschl, J., Marco, K., Grosskreutz, J., and Denzler, J., Quantitative analysis of pathological mitochondrial morphology in neuronal cells in confocal laser scanning microscopy images, Proceedings IWBBIO, 2014, vol. 2014, pp. 1290–1301.Google Scholar
  10. Lautenschlager, J., Lautenschlager, C., Tadic, V., Sube, H., Ortmann, W., Denzler, J., and Grosskreutz, J., Novel computer vision algorithm for the reliable analysis of organelle morphology in whole cell 3D images—a pilot study for the quantitative evaluation of mitochondrial fragmentation in amyotrophic lateral sclerosis, Mitochondrion, 2015, vol. 25, pp. 49–59.CrossRefPubMedGoogle Scholar
  11. Ollion, J., Cochennec, J., Loll, F., scudé, C., and Boudier, T., TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization, Bioinformatics (Oxford, England), 2013, vol. 29, pp. 1840–1841.CrossRefGoogle Scholar
  12. Picone, P., Nuzzo, D., Caruana, L., Scafidi, V., and Di Carlo, M., Mitochondrial dysfunction: different routes to Alzheimer’s disease therapy, Oxidative Med. Cell. Longevity, 2014. doi 10.1155/2014/780179Google Scholar
  13. Plotnikov, E.Y., Kazachenko, A.V., Vyssokikh, M.Y., Vasileva, A.K., Tcvirkun, D.V., Isaev, N.K., and Zorov, D.B., The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., 2007, vol. 72, pp. 1493–1502.CrossRefPubMedGoogle Scholar
  14. Plotnikov, E.Y., Vasileva, A.K., Arkhangelskaya, A.A., Pevzner, I.B., Skulachev, V.P., and Zorov, D.B., Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin, FEBS Lett., 2008, vol. 582, pp. 3117–3124.CrossRefPubMedGoogle Scholar
  15. Poliakova, I.A., Zorov, D.B., and Leikina, M.I., Structure–activity changes of mitochondria from cultured cells upon disruption of energy metabolism, Dokl. Akad. Nauk, 1995, vol. 342, no. 4, pp. 553–555.PubMedGoogle Scholar
  16. Silachev, D.N., Zorova, L.D., Usatikova, E.A., Pevzner, I.B., Babenko, V.A., Gulyaev, M.V., Pirogov, Yu.A., Antonenlo, Yu.N., Plotnikov, E.Y., and Zorov, D.B., Mitochondria as a target for neuroprotection, Biol. Membr., 2015, vol. 32, no. 5–6, pp. 388–398.Google Scholar
  17. Skulachev, V.P., Bakeeva, L.E., Chernyak, B.V., Domnina, L.V., Minin, A.A., Pletjushkina, O.Y., and Zorov, D.B., Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 2004, vols. 256–257, pp. 341–358.CrossRefPubMedGoogle Scholar
  18. Smith, R.A. and Ord, M.J., Mitochondrial form and function relationships in vivo: their potential in toxicology and pathology, Int. Rev. Cytol., 1983, vol. 83, pp. 63–134.CrossRefPubMedGoogle Scholar
  19. Vorobjev, I.A. and Zorov, D.B., Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum, FEBS Lett., 1983, vol. 163, pp. 311–314.CrossRefPubMedGoogle Scholar
  20. Wang, X., Wang, W., Li, L., Perry, G., Lee, H., and Zhu, X., Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease, Biochim. Biophys. Acta. Mol. Basis Disease, 2014, vol. 1842, pp. 1240–1247.CrossRefGoogle Scholar
  21. Zorov, D.B., Krasnikov, B.F., Kuzminova, A.E., Vysokikh, M.Y., and Zorova, L.D., Mitochondria revisited, alternative functions of mitochondria. Biosci. Rep., 1997, vol. 17, pp. 507–520.CrossRefPubMedGoogle Scholar
  22. Zorov, D.B., Isaev, N.K., Plotnikov, E.Y., Silachev, D.N., Zorova, L.D., Pevzner, I.B., Morosanova, M.A., Jankauskas, S.S., Zorov, S.D., and Babenko, V.A., Perspectives of mitochondrial medicine, Biochemistry (Moscow), 2013, vol. 78, no. 9, pp. 979–990.CrossRefGoogle Scholar
  23. Zorov, D.B., Vorobjev, I.A., Plotnikov, E.Y., Silachev, D.N., Zorova, L.D., Pevzner, I.B., Babenko, V.A., Zorov, S.D., Jankauskas, S.S., and Popkov, V.A., Specific issues of mitochondrial fragmentation (fission). Partial problems, Biol. Membr., 2015, vol. 32, nos. 5–6, pp. 338–345.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Popkov
    • 1
    • 2
  • E. Yu. Plotnikov
    • 1
  • L. D. Zorova
    • 1
    • 3
  • I. B. Pevzner
    • 1
  • D. N. Silachev
    • 1
  • V. A. Babenko
    • 1
    • 2
  • S. S. Jankauskas
    • 1
  • S. D. Zorov
    • 1
    • 2
  • D. B. Zorov
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  3. 3.International Laser CenterLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations