Cell and Tissue Biology

, Volume 10, Issue 5, pp 341–348 | Cite as

A172 and T98G cell lines characteristics

  • L. N. Kiseleva
  • A. V. Kartashev
  • N. L. Vartanyan
  • A. A. Pinevich
  • M. P. Samoilovich


During prolonged cultivation, cell lines may lose a number of innate characteristics or acquire new ones. In this work, we compared growth and phenotypic characteristics of human glioblastoma А172 and Т98G cell lines received from the cell culture collection of the Research Institute of Influenza (St. Petersburg, Russia). The activity of genes encoding intracellular proteins that define belonging of these cell lines to mesenchymal type, as well as activity of several growth factor genes and extracellular matrix genes was evaluated. Cell lines A172 and T98G varied in morphology and surface markers expression. High level of mesenchymal markers CD90 and CD105, fibroblast activation protein, and tenascin C was detected for A172 cell line. Both cell lines expressed high level of α2 smooth muscle actin gene. Data demonstrating high activity of genes encoding major angiogenesis inductors (VEGF, FGF2(b), TGFβ1) and thrombospondin-1 in cell lines under study are in agreement with published data. Reduction of fetal serum content in culture medium from 10 to 5% increased the number of cells with CD73 and CD105 surface antigens in both cell lines. A172 and T98G cell lines maintain the main features of glioblastomas and therefore can be used as research objects in investigation of this type of neoplasms.


glioblastoma A172 T98G mesenchymal markers growth factors angiogenesis inductors 



fetal calf serum


deoxynucleoside triphosphates


epidermal growth factor


fibroblast activation protein


basic fibroblast growth factor 2


glyceraldehyde-3-phosphate dehydrogenase


glial fibrillary acidic protein


hepatocyte growth factor


smooth muscle actin α2


transforming growth factor β1




tenascin C


vascular endothelial growth factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnihotri, S., Gajadhar, A.S., Ternamian, C., Gorlia, T., Diefes, K.L., Mischel, P.S., Kelly, J., McGown, G., Thorncroft, M., Carlson, B.L., Sarkaria, J.N., Margison, G.P., Aldape, K., Hawkins, C., Hegi, M., and Guha, A., Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients, J. Clin. Invest., 2012, vol. 122, pp. 253–266.CrossRefPubMedGoogle Scholar
  2. Akiyama, Y., Komiyama, M., Miyata, H., Yagoto, M., Ashizawa, T., Iizuka, A., Oshita, C., Kume, A., Nogami, M., Ito, I., Watanabe, R., Sugino, T., Mitsuya, K., Hayashi, N., Nakasu, Y., and Yamaguchi, K., Novel cancer-testis antigen expression on glioma cell lines derived from high-grade glioma patients, Oncol. Rep., 2014, vol. 31, pp. 1683–1690.PubMedGoogle Scholar
  3. Amagasaki, K., Sasaki, A., Kato, G., Maeda, S., Nukui, H., and Naganuma, H., Antisense-mediated reduction in thrombospondin-1 expression reduces cell motility in malignant glioma cells, Int. J. Cancer, 2001, vol. 94, pp. 508–512.CrossRefPubMedGoogle Scholar
  4. Anido, J., Saez-Borderıas, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M.A., Prieto-Sanchez, R.M., Barba, I., Martınez-Saez, E., Prudkin, L., Cuartas, I., Raventós, C., Martínez-Ricarte, F., Poca, M.A., García-Dorado, D., Lahn, M.M., Yingling, J.M., Rodón, J., Sahuquillo, J., Baselga, J., and Seoane, J., TGF-β receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma, Cancer Cell, 2010, vol. 18, pp. 655–668.CrossRefPubMedGoogle Scholar
  5. Denysenko, T., Gennero, L., Juenemann, C., Morra, I., Masperi, P., Ceroni, V., Pragliola, A., Ponzetto, A., and Melcarne, A., Heterogeneous phenotype of human glioblastoma, in vitro study, Cell Biochem. Funct., 2014, vol. 32, pp. 164–176.CrossRefPubMedGoogle Scholar
  6. Dráberová, E., Del, Valle, L., Gordon, J., Marková, V., Smejkalová, B., Bertrand, L., de Chadarévian, J.P., Agamanolis, D.P., Legido, A., Khalili, K., Dráber, P., and Katsetos, C.D., Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity, J. Neuropathol. Exp. Neurol., 2008, vol. 67, pp. 341–354.CrossRefPubMedGoogle Scholar
  7. Dror, N., Mandel, M., and Lavie, G., Unique anti-glioblastoma activities of hypericin are at the crossroad of biochemical and epigenetic events and culminate in tumor cell differentiation, PLoS One, 2013, vol. 8, p. e73625.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Freshney, R.I., Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th ed., Wiley-Blackwell, 2011.Google Scholar
  9. Ghods, A.J., Glick, R., Braun, D., and Feinstein, D., Beneficial actions of the anti-inflammatory dimethyl fumarate in glioblastomas, Surg. Neurol. Int., 2013, vol. 4, pp. 160–166.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H., and Parks, W.P., In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors, J. Natl. Cancer Inst., 1973, vol. 51, pp. 1417–1423.PubMedGoogle Scholar
  11. Hasegawa, K., Yoshida, T., Matsumoto, K., Katsuta, K., Waga, S., and Sakakura, T., Differential expression of tenascin-C and tenascin-X in human astrocytomas, Acta Neuropathol., 1997, vol. 93, pp. 431–437.CrossRefPubMedGoogle Scholar
  12. Hirvonen, H.E., Salonen, R., Sandberg, M.M., Vuoriol, E., Vastrik, I., Kotilainen, E., and Kalimo, H., Differential expression of myc, max and RB1 genes in human gliomas and glioma cell lines, Br. J. Cancer, 1994, vol. 69, pp. 16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Katsetos, C.D., Draberova, E., Smejkalova, B., Reddy, G., Bertrand, L., de Chadarevian, J.P., Legido, A., Nissanov, J., Baas, P.W., and Draber, P., Class III β-tubulin and γ-tubulin are co-expressed and form complexes in human glioblastoma cells, Neurochem. Res., 2007, vol. 32, pp. 1387–1398.CrossRefPubMedGoogle Scholar
  14. Knupfer, M.M., Poppenborg, H., Hotfilder, M., Kuhnel, K., Wolff, J.E., and Domula, M., CD44 expression and hyaluronic acid binding of malignant glioma cells, Clin. Exp. Metastasis, 1999, vol. 17, pp. 71–76.CrossRefPubMedGoogle Scholar
  15. Korzhevskii, D.E., Otellin, V.A., and Litvinchuk, L.F., Morphological and cytochemical properties of the human glioblastoma T98G cells in monolayer culture, Morfologiia, 2003, vol. 123, pp. 39–42.PubMedGoogle Scholar
  16. Melendez, B., Garcia-Claver, A., Ruano, Y., Campos-Martin, Y., de, Lope, A.R., Perez-Magan, E., Mur, P., Torres, S., Lorente, M., Velasco, G., and Mollejo, M., Copy number alterations in glioma cell lines, in Glioma. Exploring Its Biology and Practical Relevance, Rijeka: InTech., 2011, pp. 429–448.Google Scholar
  17. Mentlein, R., Hattermann, K., Hemion, C., Jungbluth, A.A., and Held-Feindt, J., Expression and role of the cell surface protease seprase/fibroblast activation protein-α (FAP-α) in astroglial tumors, Biol. Chem., 2011, vol. 392, pp. 199–207.CrossRefPubMedGoogle Scholar
  18. Naganuma, H., Satoh, E., Kawataki, T., Amagasaki, K., Satoh, H., and Nukui, H., Cell density regulates thrombospondin-1 production in malignant glioma cells, J. Neurooncol, 2006, vol. 63, pp. 147–153.CrossRefGoogle Scholar
  19. Nolan, T., Hands, R.E., and Bustin, S.A., Quantification of mRNA using real-time RT-PCR, Nat. Protoc., 2003, vol. 1, pp. 1559–1582.CrossRefGoogle Scholar
  20. Pavon, L.F., Marti, L.C., Sibov, T.T., Malheiros, S.M., Oliveira, D.M., Guilhen, D.D., Camargo-Mathias, M.I., Amaro, Junior, E., and Gamarra, L.F., The ultrastructural study of tumorigenic cells using nanobiomarkers, Cancer Biother. Radiopharm., 2010, vol. 25, pp. 289–298.CrossRefPubMedGoogle Scholar
  21. Pietras, A., Katz, A.M., Ekström, E.J., Wee, B., Halliday, J.J., Pitter, K.L., Werbeck, J.L., Amankulor, N.M., Huse, J.T., and Holland, E.C., Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth, Cell Stem Cell, 2014, vol. 14, pp. 357–369.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pinevich, A.A., Samoilovich, M.P., Shashkova, O.A., Vartanyan, N.L., Polysalov, V.N., Kiseleva, L.N., Kartashev, A.V., Aizenshtadt, A.A., and Klimovich, V.B., Characteristics of mesenchymal stromal cells isolated from patients with breast cancer, Cell Technol. Biol. Med., 2014, vol. 2, pp. 666–672.Google Scholar
  23. Restrepo, A., Smith, C.A, Agnihotri, S., Shekarforoush, M., Kongkham, P.N., Seol, H.J., Northcott, P., and Rutka, J.T., Epigenetic regulation of glial fibrillary acidic protein by DNA methylation in human malignant gliomas, Neuro Oncol., 2011, vol. 13, pp. 42–50.CrossRefPubMedGoogle Scholar
  24. Sasaki A., Naganuma, H., Satoh, E., Kawataki, T., Amagasaki, K., and Nukui, H., Participation of thrombospondin-1 in the activation of latent transforming growth factor-beta in malignant glioma cells, Neurol. Med. Chir. (Tokyo), 2001, vol. 41, pp. 253–259.CrossRefGoogle Scholar
  25. Siegel, G., Kluba, T., Hermanutz-Klein, U., Bieback, K., Northoff, H., and Schafer, R., Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells, BMC Med., 2013, vol. 11, pp. 146–165.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Stein, G.H., T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro, J. Cell Physiol., 1979, vol. 99, pp. 43–54.CrossRefPubMedGoogle Scholar
  27. Strakova, N., Ehrmann, J., Dzubak, P., Bouchal, J., and Kolar, Z., The synthetic ligand of peroxisome proliferatoractivated receptor-ciglitazone affects human glioblastoma cell lines, J. Pharmacol. Exp. Ther., 2004, vol. 309, pp. 1239–1247.CrossRefPubMedGoogle Scholar
  28. Tolsma, S.S., Volpert, O.V., Good, D.J., Frazier, W.A., Polverini, P.J., and Bouck, N., Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity, J. Cell Biol., 1993, vol. 122, pp. 497–511.CrossRefPubMedGoogle Scholar
  29. Tong, Y.Q., Liu, B., Zheng, H.Y., Gu, J., Liu, H., Li, F., Tan, B.H., Hartman, M., Song, C., and Li, Y., MiR-215, an activator of the CTNNBIP1/β-catenin pathway, is a marker of poor prognosis in human glioma, Oncotarget, 2015, vol. 6, pp. 25024–25033.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tso, C.L., Shintaku, P., Chen, J., Liu, Q., Liu, J., Chen, Z., Yoshimoto, K., Mischel, P.S., Cloughesy, T.F., Liau, L.M., and Nelson, S.F., Primary glioblastomas express mesenchymal stem-like properties, Mol. Cancer Res., 2006, vol. 4, pp. 607–619.CrossRefPubMedGoogle Scholar
  31. Yamamoto S., Wakimoto, H., Aoyagi, M., Hirakawa, K., and Hamada, H., Modulation of motility and proliferation of glioma cells by hepatocyte growth factor, Jpn. J. Cancer Res., 1997, vol. 88, pp. 564–577.CrossRefPubMedGoogle Scholar
  32. Yoshida T., Matsuda, Y., Naito, Z., and Ishiwata, T., CD44 in human glioma correlates with histopathological grade and cell migration, Pathol. Int., 2012, vol. 62, pp. 463–470.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. N. Kiseleva
    • 1
  • A. V. Kartashev
    • 1
  • N. L. Vartanyan
    • 1
  • A. A. Pinevich
    • 1
    • 2
  • M. P. Samoilovich
    • 1
    • 2
  1. 1.Russian Research Center for Radiology and Surgical TechnologiesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations