Cell and Tissue Biology

, Volume 10, Issue 2, pp 145–151 | Cite as

Dual proapoptotic and pronecrotic effect of hydrogen peroxide on human umbilical vein endothelial cells

  • A. D. NadeevEmail author
  • I. V. Kudryavtsev
  • M. K. Serebriakova
  • P. V. Avdonin
  • V. P. Zinchenko
  • N. V. Goncharov


Human umbilical vein endothelial cells were exposed in culture to hydrogen peroxide (H2O2), keeping them close to physiological conditions (high cell density, high serum content, H2O2 concentration not over 500 µM). Cell viability was assessed by flow cytometry using simultaneous staining with the fluorescent dye PO-PRO-1 to detect early apoptotic cells and DRAQ7 to detect late apoptotic and necrotic cells. The data obtained suggest that the primary mechanism of the cytotoxic response to H2O2 is apoptosis. The critical concentration of H2O2 causing death in a dense monolayer is 250 µM. Lower H2O2 concentrations (up to 200 µM) cause death of individual cells. The population of endothelial cell retains viability and response to calcium activating agonists does not change compared to control cells.


hydrogen peroxide endothelium cytotoxicity apoptosis necrosis 



reactive oxygen species


superoxide dismutase


phosphate buffered saline


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affara, M., Sanders, D., Araki, H., Tamada, Y., Dunmore, B.J., Humphreys, S., Imoto, S., Savoie, C., Miyano, S., Kuhara, S., Jeffries, D., Print, C., and Charnock-Jones, D.S., Vasohibin-1 is identified as a master-regulator of endothelial cell apoptosis using gene network analysis, BMC Genomics, 2013, vol. 14, p. 23.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akagi, J., Kordon, M., Zhao, H., Matuszek, A., Dobrucki, J., Errington, R., Smith, P.J., Takeda, K., Darzynkiewicz, Z., and Wlodkowic, D., Real-time cell viability assays using a new anthracycline derivative DRAQ7, Cytometry A, 2013, vol. 83, pp. 227–234.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al Ahmad, A., Gassmann, M., and Ogunshola, O.O., Involvement of oxidative stress in hypoxia-induced bloodbrain barrier breakdown, Microvasc. Res., 2012, vol. 84, pp. 222–225.CrossRefPubMedGoogle Scholar
  4. Baldrige, C.W. and Gerard, R.W., The Extra Respiration of Phagocytosis, AJP–Legacy, 1932, vol. 103, pp. 235–236.Google Scholar
  5. Brandes, R.P., Takac, I., and Schroder, K., No superoxide—no stress? Nox4, the good NADPH oxidase!, Arterioscler. Thromb. Vasc. Biol., 2011, vol. 31, pp. 1255–1257.CrossRefPubMedGoogle Scholar
  6. Chen, J., Gu, Y., Shao, Z., Luo, J., and Tan, Z., Propofol protects against hydrogen peroxide-induced oxidative stress and cell dysfunction in human umbilical vein endothelial cells, Mol. Cell Biochem., 2010, vol. 339, pp. 43–54.CrossRefPubMedGoogle Scholar
  7. Csordas, A., Wick, G., and Bernhard, D., Hydrogen peroxide-mediated necrosis induction in HUVECs is associated with an atypical pattern of caspase-3 cleavage, Exp. Cell Res., 2006, vol. 312, pp. 1753–1764.CrossRefPubMedGoogle Scholar
  8. Danilov, S.M., Allikmets, E., and Martynov, A., Stimulation of cultured human vascular endothelial cell proliferation by growth factors from human brain, heparin and thrombine, J. Cell Biol., 1984, vol. 99, pp. 274.Google Scholar
  9. Gardner, P.R., Nguyen, D.D., and White, C.W., Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 12248–12252.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gimbrone, M.A., Shefton, E.J., and Cruise, S.A., Isolation and primary culture of endothelial cells from human umbilical vessels, TCA Manual, 1978, vol. 4, pp. 813–817.CrossRefGoogle Scholar
  11. Glisic-Milosavljevic, S., Waukau, J., Jana, S., Jailwala, P., Rovensky, J., and Ghosh, S., Comparison of apoptosis and mortality measurements in peripheral blood mononuclear cells (PBMCs) using multiple methods, Cell Prolif., 2005, vol. 38, pp. 301–311.CrossRefPubMedGoogle Scholar
  12. Goncharov, N.V., Sakharov, I.Iu., Danilov, S.M., and Sakandelidze, O.G., Use of collagenase from the hepatopancreas of the Kamchatka crab for isolating and culturing endothelial cells of the large vessels in man, Byull. Eksp. Biol. Med., 1987, vol. 104, pp. 376–378.CrossRefGoogle Scholar
  13. Goncharov, N.V., Avdonin, P.V., Nadeev, A.D., Zharkikh, I.L., and Jenkins, R.O., Reactive oxygen species in pathogenesis of atherosclerosis, Curr. Pharm. Des., 2015a, vol. 21, pp. 1134–1146.CrossRefPubMedGoogle Scholar
  14. Goncharov, N.V., Belinskaya, D.A., Razygraev, A.V., and Ukolov, A.I., O On the enzymatic activity of albumin, Russ. J. Bioorg. Chem., 2015b, vol. 41, no. 2, pp. 113–124.CrossRefGoogle Scholar
  15. Jones, D.P., Radical-free biology of oxidative stress, Am. J. Physiol. Cell Physiol., 2008, vol. 295, pp. C849–C868.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kudryavtsev, I.V., Garnyuk, V.V., Nadeev, A.D., and Goncharov, N.V., Hydrogen peroxide modulates expression of surface antigens by human umbilical vein endothelial cells in vitro, Biochemistry (Moscow) Suppl. S. A: Membrane Cell Biol., 2013, vol. 8, 1, pp. 97–102.CrossRefGoogle Scholar
  17. Lee, Y.J., Kang, I.J., Bünger, R., and Kang, Y.H., Enhanced survival effect of pyruvate correlates MAPK and NF-kappaB activation in hydrogen peroxide-treated human endothelial cells, J. Appl. Physiol., 2004, vol. 96, pp. 793–801.CrossRefPubMedGoogle Scholar
  18. Lin, X., Sun, T., Cai, M., and Shen, P., Cell-death-mode switch from necrosis to apoptosis in hydrogen peroxide treated macrophages, Sci. China Life Sci., 2010, vol. 53, pp. 1196–1203.CrossRefPubMedGoogle Scholar
  19. Liu, R., Liu, H., Ha, Y., Tilton, R.G., and Zhang, W., Oxidative stress induces endothelial cell senescence via downregulation of Sirt6, Biomed. Res. Int., 2014, vol. 2014, p. 902842.PubMedPubMedCentralGoogle Scholar
  20. Magder, S., Reactive oxygen species: toxic molecules or spark of life? Crit. Care., 2006, vol. 10, pp. 208.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Martin-Ventura, J.L., Madrigal-Matute, J., MartinezPinna, R., Ramos-Mozo, P., Blanco-Colio, L.M., Moreno, J.A., Tarin, C., Burillo, E., FernandezGarcia, C.E., Egido, J., Meilhac, O., and Michel, J.B., Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: detoxifying mechanisms and potential therapeutic options, Thromb. Haemost., 2012, vol. 108, pp. 435–442.CrossRefPubMedGoogle Scholar
  22. Matsuda, M. and Shimomura, I., Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer, Obes. Res. Clin. Pract., 2013, vol. 7, pp. e330–e341.CrossRefPubMedGoogle Scholar
  23. McKeague, A.L., Wilson, D.J., and Nelson, J., Staurosporine-induced apoptosis and hydrogen peroxide-induced necrosis in two human breast cell lines, Br. J. Cancer, 2003, vol. 88, pp. 125–131.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miller, E.W., Dickinson, B.C., and Chang. C.J., Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 15681–15686.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Muzykantov, V.R., Sakharov, D.V., Domogatsky, S.P., Goncharov, N.V., and Danilov, S.M., Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide, Am. J. Pathol., 1987, vol. 128, pp. 276–285.PubMedPubMedCentralGoogle Scholar
  26. Muzykantov, V.R., Sakharov, D.V., Sinitsyn, V.V., Domogatsky, S.P., Goncharov, N.V., and Danilov, S.M., Specific killing of human endothelial cells by antibodyconjugated glucose oxidase, Anal. Biochem., 1988, vol. 169, pp. 383–389.CrossRefPubMedGoogle Scholar
  27. Nadeev, A.D., Zinchenko, V.P., Avdonin, P.V., and Goncharov, N.V., Toxic and signal properties of active forms of oxygen, Toksikol. Vestn., 2014a, vol. 125, no. 1, pp. 22–27.Google Scholar
  28. Nadeev, A.D., Zharkikh, I.L., Avdonin, P.V., and Goncharov, N.V., Serotonin and its receptors in the cardiovascular system, Eksp. Klin. Farmakol., 2014b, vol. 77, no. 5, pp. 32–37.PubMedGoogle Scholar
  29. Novozhilov, A.V., Tavrovskaya, T.V., Voitenko, N.G., Goncharov, N.V., Maslova, M.N., and Morozov, V.I., The effect of antioxidants on erythrocytes in rats during an exhaustive run, Ross. Fiziol. Zh. Im. I. M. Sechenova, 2013, vol. 99, 10, pp. 1223–1232.Google Scholar
  30. Profirovic, J., Strekalova, E., Urao, N., Krbanjevic, A., Andreeva, A.V., Varadarajan, S., Fukai, T., Hen, R., UshioFukai, M., and Voyno-Yasenetskaya, T.A., A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor, Angiogenesis, 2013, vol. 16, pp. 15–28.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Prokofieva, D.S. and Goncharov, N.V., The effects of biogenic and abiogenic disulphides on endothelial cells in culture: comparison of three methods of viability assessment, Cell Tissue Biol., 2014, vol. 8, 5, pp. 389–399.CrossRefGoogle Scholar
  32. Shappell, S.B., Toman, C., Anderson, D.C., Taylor, A.A., Entman, M.L., and Smith, C.W., Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils, J. Immunol., 1990, vol. 144, pp. 2702–2711.PubMedGoogle Scholar
  33. Shmurak, V.I., Kurdyukov, I.D., Nadeyev, A.D., Voitenko, N.G., Glashkina, L.M., and Goncharov, N.V., Biomarkers of intoxication by organophosphorous toxic agents, Toksikol. Vestn., 2012, vol. 4. pp. 30–34.Google Scholar
  34. Song, W., Pu, J., and He, B., Tanshinol protects human umbilical vein endothelial cells against hydrogen peroxideinduced apoptosis, Mol. Med. Rep., 2014, vol. 10, pp. 2764–2770.PubMedGoogle Scholar
  35. Stemberger, J., Witt, V., Printz, D., Geyeregger, R., and Fritsch, G., Novel single-platform multiparameter FCM analysis of apoptosis: significant differences between wash and no-wash procedure, Cytometry, 2010, vol. A 77, pp. 1075–1081.CrossRefPubMedGoogle Scholar
  36. Stokes, L., Jiang, L.H., Alcaraz, L., Bent, J., Bowers, K., Fagura, M., Furber, M., Mortimore, M., Lawson, M., Theaker, J., Laurent, C., Braddock, M., and Surprenant, A., Characterization of a selective and potent antagonist of human P2X(7) receptors, AZ11645373, Br. J. Pharmacol., 2006, vol. 149, pp. 880–887.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sun, L., Yau, H.Y., Wong, W.Y., Li, R.A., and Huang, Y. Yao, X., Role of TRPM2 in H(2)O(2)-induced cell apoptosis in endothelial cells, PLoS One, 2012, vol. 7, p. e43186.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Terekhina, I.L., Nadeev, A.D., Kozhevnikova, L.M., Goncharov, N.V., and Avdonin, P.V., 5HT1Band 5HT2Breceptors of serotonin stimulate increase in cytoplasmic calcium concentrations in vascular endothelial cells, Patogenez, 2012, vol. 10, 1, pp. 70–72.Google Scholar
  39. Tkachuk, V.A., Tyurin-Kuzmin, P.A., Belousov, V.V., and Vorotnikov, A.V., Hydrogen peroxide as a new second messenger, Biol. Membr., 2012, vol. 29, no. 1–2, pp. 21–37.Google Scholar
  40. Vieceli, Dalla, Seg, F., Zambonin, L., Fiorentini, D., Rizzo, B., Caliceti, C., Landi, L., Hrelia, S., and Prata, C., Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells, Biochim. Biophys. Acta, 2014, vol. 1843, pp. 806–814.CrossRefGoogle Scholar
  41. Voitenko, N.G., Garniuk, V.V., Prokofieva, D.S., and Goncharov, N.V., On new screening biomarker to evaluate health state in personnel engaged into chemical weapons extinction, Med. Tr. Prom. Ekol., 2015, vol. 3, pp. 38–42.PubMedGoogle Scholar
  42. Xie, C.L., Hu, LQ, Pan, Y.B., and Qian, Y.N., Propofol attenuation of hydrogen peroxide-induced injury in human umbilical vein endothelial cells involves aldose reductase, Pharmazie, 2015, vol. 70, pp. 103–109.PubMedGoogle Scholar
  43. Yang, L., Froio, R.M., Sciuto, T.E., Dvorak, A.M., Alon, R., and Luscinskas, F.W., ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-a-activated vascular endothelium under flow, Blood, 2005, vol. 106, pp. 584–592.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zaki, M.E., El-Bassyouni, H., Kamal, S., El-Gammal, M., and Youness, E., Association of serum paraoxonase enzyme activity and oxidative stress markers with dyslipidemia in obese adolescents, Indian J. Endocrinol. Metab., 2014, vol. 18, pp. 340–344.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. D. Nadeev
    • 1
    Email author
  • I. V. Kudryavtsev
    • 2
    • 3
  • M. K. Serebriakova
    • 2
  • P. V. Avdonin
    • 4
  • V. P. Zinchenko
    • 1
  • N. V. Goncharov
    • 5
    • 6
  1. 1.Institute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia
  2. 2.Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”St. PetersburgRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia
  4. 4.Koltsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  5. 5.Research Institute of HygieneOccupational Pathology and Human EcologySt. PetersburgRussia
  6. 6.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations