Advertisement

Cell and Tissue Biology

, Volume 10, Issue 2, pp 160–169 | Cite as

Mechanisms of adaption to salinity stress in marine gastropods Littorina saxatilis: a proteomic analysis

  • O. A. Muraeva
  • A. L. Maltseva
  • N. A. Mikhailova
  • A. I. Granovitch
Article

Abstract

Salinity is one of the most important abiotic environmental factors for marine animals. If salinity deviates from optimum, adaptive mechanisms switch on to maintain organism’s physiological activity. In this study the proteome of the marine snails Littorina saxatilis from natural habitats (12, 23 and 32‰ and in response to experimental salinity decreasing (from 20‰ to 10‰) was analyzed. The isolation of all snails inside their shells and gradually declining mortality was observed under an acute experimental salinity decrease. Proteomic changes were evaluated in the survived experimental mollusks compared to control individuals using differential 2D gel-electrophoresis (DIGE) and subsequent LC-MS/MS-identification of proteins. Approximately 10% of analyzed proteins underwent upor down regulation during the experiment. Proteins of folding, antioxidant response, intercellular matrix, and metabolic enzymes were identified among them. Proteomic changes observed in experimental hypoosmotic stress partially reproduced in the proteomes of molluscs that live in conditions of natural freshening (estuaries). Possible mechanisms involved in the adaptation process of L. saxatilis individuals to hypoosmotic stress are discussed.

Keywords

salinity adaptation proteomic analysis osmotic stress prosobrach mollusks Littorina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Hirai, S., and Okada, S., Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicas, Comparative Biochem. Physiol. A: Mol. Integrative, 2007, vol. 146, pp. 40–46.CrossRefGoogle Scholar
  2. Berger, V.Ya., Adaptatsiya morskikh mollyuskov k izmeneniyam solenosti sredy (Adaptations of Marine Mollusks to Changes of Environmental Salinity), Leningrad: Nauka, 1986.Google Scholar
  3. Bussell, J.A., Gidman, E.A., Causton, D.R., GwynnJones, D., Malham, S.K., Jones, M.L.M., Reynolds, B., and Seed, R., Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress, J. Exper. Marine Biol. Ecol., 2008, vol. 358, pp. 78–85.CrossRefGoogle Scholar
  4. Canbäck, B., André, C., Galindo, J., Johannesson, K., Johansson, T., Panova, M., Tunlid, A., and Butlin, R., The Littorina Sequence Database (LSD)—an online resource for genomic data, Mol. Ecol. Resources, 2012, vol. 12, pp. 142–148.CrossRefGoogle Scholar
  5. Cheng, W., Juang, F.M., and Chen, J.C., The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels, Fish Shellfish Immunol., 2004, vol. 16, pp. 295–306.CrossRefPubMedGoogle Scholar
  6. Davenport, J., The isolation response of mussels (Mytilus edulis L.) exposed to falling sea-water concentrations, J. Marine Biol. Assoc. UK, 1979, vol. 59, pp. 123–132.CrossRefGoogle Scholar
  7. De Zoysa, M., Whang, I., Lee, Y., Lee, S., Lee, J.S., and Lee, J., Transcriptional analysis of antioxidant and immune defense genes in disk abalone (Haliotis discus discus) during thermal, low-salinity and hypoxic stress, Compar. Biochem. Physiol. B: Biochem. Mol. Biol., 2009, vol. 154, pp. 387–395.CrossRefGoogle Scholar
  8. Diz, A.P., Truebano, M., and Skibinski, D.O., The consequences of sample pooling in proteomics: an empirical study, Electrophoresis, 2009, vol. 30, pp. 2967–2975.CrossRefPubMedGoogle Scholar
  9. Foster, B.A., Responses and acclimation to salinity in the adults of some balanomorph barnacles, Phil. Trans. Royal Soc. B: Biol. Sci., 1970, vol. 256, pp. 377–400.CrossRefGoogle Scholar
  10. Fretter, V. and Graham, A., British Prosobranch Molluscs, Their Functional Anatomy and Ecology. Revisited and updated edition, London: The Ray Soc., 1994.Google Scholar
  11. Granovitch, A.I., Mikhailova, N.A., Znamenskaya, O., and Petrova, Yu.A., Species composition of mollusks of genus Littorina (Gastropoda, Prosobranchia) at East Murman, Zool. Zh., 2004, vol. 83, 11, pp. 1305–1316.Google Scholar
  12. Hartl, F.U., Molecular chaperones in cellular protein folding, Nature, 1996, vol. 381, pp. 571–580.CrossRefPubMedGoogle Scholar
  13. Jiang, H., Li, F., Xie, Y., Huang, B., Zhang, J., Zhang, J., Zhang, C., Li, S., and Xiang, J., Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to hypoxic stress, Proteomics, 2009, vol. 9, pp. 3353–3367.CrossRefPubMedGoogle Scholar
  14. Kamradt, M.C., Lu, M., Werner, M.E., Kwan, T., Chen, F., Strohecker, A., Oshita, S., Wilkinson, J.C., Yu, C., Oliver, P.G., Duckett, C.S., Buchsbaum, D.J., LoBuglio, A.F., Jordan, V.C., and Cryns, V.L., The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3, J. Biol. Chem., 2005, vol. 280, pp. 11059–11066.CrossRefPubMedGoogle Scholar
  15. Kamradt, M.C., Lu, M., Werner, M.E., Kwan, T., Chen, F., Strohecker, A., Oshita, S., Wilkinson, J.C., Yu, C., Oliver, P.G., Duckett, C.S., Buchsbaum, D.J., LoBuglio, A.F., Jordan, V.C., and Cryns, V.L., The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3, J. Biol. Chem., 2005, vol. 280, pp. 11059–11066.CrossRefPubMedGoogle Scholar
  16. Khlebovich, V.V., Aladin, and N.V., Salinity factor in animal living, Vestnik Ross. Akad. Nauk, 2010, vol. 80, 5, pp. 527–532.Google Scholar
  17. Kültz, D., Fiol, D., Valkova, N., Gomez-Jimenez, S., Chan, S.Y., and Lee, J., Functional genomics and proteomics of the cellular osmotic stress response in ‘non-model’ organisms, J. Exper. Biol., 2007, vol. 210, pp. 1593–1601.CrossRefGoogle Scholar
  18. Lockwood, B.L. and Somero, G.N., Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus), Mol. Ecol., 2011, vol. 20, pp. 517–529.CrossRefPubMedGoogle Scholar
  19. Lushchak, V.I., Environmentally induced oxidative stress in aquatic animals, Aquatic Toxicol., 2011, vol. 101, pp. 13–30.CrossRefGoogle Scholar
  20. Meng, X., Dong, Y., Dong, S., Yu, S., and Zhou, X., Mortality of the sea cucumber Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: osmoregulation and heat shock protein expression, Aquaculture, 2011, vol. 316, pp. 88–92.CrossRefGoogle Scholar
  21. Meng, J., Zhu, Q., Zhang, L., Li, C., Li, L., She, Z., Huang, B., and Zhang, G., Genome and transcriptome analyses provide insight into the euryhaline adaptation mechanism of Crassostrea gigas, PLoS One, 2013, vol. 8, p. e58563.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pierce, S.K., Invertebrate cell volume control mechanisms: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute, Biol. Bull., 1982, vol. 163, pp. 405–419.CrossRefGoogle Scholar
  23. Plekhanov, A.Yu., Smurov, A.O., Podlipaeva, Yu.I., Ivanova, L.O., and Goodkov, A.V., Heat shock proteins of freshwater protists and their involvement in adaptation to changes in the environmental salinity, Tsitologiia, 2006, vol. 48, 6, pp. 530–534.PubMedGoogle Scholar
  24. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.Google Scholar
  25. Reid, D.G., Systematics and Evolution of Littorina, London: Ray Society, 1996, vol. 164.Google Scholar
  26. Sergievsky, S.O., Granovitch, A.I., and Mikhailova, N.A., Effect of trematode invasion on survival of mollusks Littorina obtusata (L.) and L. saxatilis (Olivi) under extremely low salinity, Parasitologia, 1986, vol. 20, 3, pp. 202–207.Google Scholar
  27. Seveso, D., Montano, S., Strona, G., Orlandi, I., Galli, P., and Vai, M., Exploring the effect of salinity changes on the levels of Hsp60 in the tropical coral Seriatopora caliendrum, Marine Environ. Res., 2013, vol. 90, pp. 96–103.CrossRefGoogle Scholar
  28. Stucchi-Zucchi, A. and Salomao, L.C., The ionic basis of membrane potentials and adaptation to hyposmotic stress in Perna perna, an osmoconforming mollusc, Compar. Biochem. Physiol. A: Mol. Integr. Physiol., 1998, vol. 121, pp. 143–148.CrossRefGoogle Scholar
  29. Tomanek, L. and Zuzow, M.J., The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress, J. Exper. Biol., 2010, vol. 213, pp. 3559–3574.CrossRefGoogle Scholar
  30. Tomanek, L, Zuzow, M.J., Hitt, L, Serafini, L, and Valenzuela, J.J., Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change, J. Exper. Biol., 2012, vol. 215, pp. 3905–3916.CrossRefGoogle Scholar
  31. Ünlü, M., Morgan, M., and Minden, J.S., Difference gel electrophoresis. A single gel method for detecting changes in protein extracts, Electrophoresis, 1997, vol. 18, pp. 2071–2077.CrossRefPubMedGoogle Scholar
  32. Wang, Y.M., The ecology of Singapore littorinids Echinolittorina malaccana and E. vidua in relation to thermal stress, PhD Thesis, Nanyang, 2013.Google Scholar
  33. Wang, F., Yang, H., Gao, F., and Liu, G., Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicas, Compar. Biochem. Physiol. A: Mol. Int. Physiol., 2008, vol. 151, pp. 491–498.CrossRefGoogle Scholar
  34. Zhao, X., Yu, H., Kong, L., and Li, Q., Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas, PLoS One, 2012, vol. 7, no. 9, p. e46244.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. A. Muraeva
    • 1
  • A. L. Maltseva
    • 1
  • N. A. Mikhailova
    • 1
    • 2
  • A. I. Granovitch
    • 1
  1. 1.Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations