Cell and Tissue Biology

, Volume 9, Issue 3, pp 217–225 | Cite as

Tandem repeats in the rodent genome and their mapping

  • D. I. Ostromyshenskii
  • I. S. Kuznetsova
  • A. S. Komissarov
  • I. V. Kartavtseva
  • O. I. Podgornaya


Tandemly repeated sequences are unique to eukaryotes and make up tens of percent of the higher eukaryote genome. However, the evolution of this class of sequences is poorly studied. In our paper, 62 families of Mus musculus tandem repeats are analyzed by bioinformatic methods, while 7 of them are analyzed by fluorescence in situ hybridization. It is shown that the same tandem repeat sets occur together only in closely related species of mice. However, even in such species, we observe differences in localization on chromosomes and the number of individual tandem repeats. With increasing evolutionary distance, only some of the tandem repeat families remain common for different species. It is shown that the use of a combination of bioinformatics and molecular biology techniques is very promising for further studies of tandem repeat evolution.


tandem repeats satellite DNA mouse Mus 



pericentromeric region of chromosomes


satellite DNA


base pair


tandem repeats


centromeric region of chromosomes


sequence read archive


whole genome shotgun


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arneson, N., Hughes, S., Houlston, R., and Done, S., Whole-genome amplification by degenerate oligonucleotide primed PCR (DOP-PCR), Cold Spring Harbor Protocol, 2008.Google Scholar
  2. Benson, G., Tandem repeats finder: a program to analyze DNA sequence, Nucleic Acids Res., 1999, vol. 27, pp. 573–580.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chevret, P., Veyrunes, F., and Britton-Davidian, J., Molecular phylogeny of the genus Mus (Rodentia: Murinae) based on mitochondrial and nuclear data, Biol. J. Linnean Soc., 2005, vol. 84, pp. 417–427.CrossRefGoogle Scholar
  4. Enukashvily, N., Donev, R., Sheer, D., and Podgornaya, O., Satellite DNA binding and cellular localisation of RNA helicase P68, J. Cell Sci., 2005, vol. 118, pp. 611–622.PubMedCrossRefGoogle Scholar
  5. Fry, K. and Salser, W., Nucleotide sequences of HS-a satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents, Cell, 1977, vol. 12, pp. 1069–1084.PubMedCrossRefGoogle Scholar
  6. Garagna, S., Marziliano, N., Zuccotti, M., Searle, J.B., Capanna, E., and Redi, C.A., Pericentromeric organization at the fusion point of mouse robertsonian translocation chromosomes, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 171–175.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Kalitsis, P., Griffiths, B., and Choo, K.H., Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 8786–8791.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Kipling, D., Mitchell, A.R., Masumoto, H., Wilson, H.E., Nicol, L., and Cooke, H.J., CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli, Mol. Cell. Biol., 1995, vol. 15, pp. 4009–4020.PubMedCentralPubMedGoogle Scholar
  9. Kit, S., Equilibrium sedimentation in density gradients of DNA preparations from animal tissues, J. Mol. Biol., 1961, vol. 3, pp. 711–716.PubMedCrossRefGoogle Scholar
  10. Komissarov, A.S., Gavrilova, E.V., Demin, S.J., Ishov, A.M., and Podgornaya, O.I., Tandemly repeated DNA families in the mouse genome, BMC Genom., 2011, vol. 12, p. 531.CrossRefGoogle Scholar
  11. Kuznetsova, I., Podgornaya, O., and FergusonSmith, M.A., High-resolution organization of mouse centromeric and pericentromeric DNA, Cytogenet. Genome Res., 2006, vol. 112, pp. 248–255.CrossRefGoogle Scholar
  12. Langmead, B. and Salzberg, S., Fast gapped-read alignment with Bowtie 2, Nature Methods, 2012, vol. 9, pp. 357–359.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Lobov, I.B., Tsutsui, K., Mitchell, A.R., and Podgornaya, O.I., Specificity of SAF-A and lamin B binding in vitro correlates with the satellite DNA bending state, J. Cell. Biochem., 2001, vol. 83, pp. 218–229.PubMedCrossRefGoogle Scholar
  14. Liu, Y.H., Takahashi, A., Kitano, T., Koide, T., Shiroishi, T., Moriwaki, K., and Saitou, N., Mosaic genealogy of the Mus musculus genome revealed by 21 nuclear genes from its three subspecies, Genes Genetic Systems, 2008, vol. 83, pp. 77–88.PubMedCrossRefGoogle Scholar
  15. Macgregor, H.C. and Varley, J.M., Working with Animal Chromosomes, Chichester: Wiley, 1983.Google Scholar
  16. Macholán, M., Vyskocilová, M., Bonhomme, F., Krystufek, B., Orth, A., and Vohralík, V., Genetic variation and phylogeography of free-living mouse species (genus Mus) in the Balkans and the Middle East, Mol. Ecol., 2007, vol. 16, pp. 4774–4788.PubMedCrossRefGoogle Scholar
  17. Melters, D.P., Bradnam, K.R., Young, H.A., Telis, N., May, M.R., Ruby, J.G., Sebra, R., Peluso, P., Eid, J., Rank, D., Fernando, Garcia,J., Derisi, J.L., Smith, T., Tobias, C., Ross-Ibarra, J., Korf, I., and Chan, S.W., Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution, Genome Biol., 2013, vol. 14, p. R10.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Mestrovi, N., Plohl, M., Mravinac, B., and Ugarkovi, D., Evolution of satellite DNAs from the genus Palorus—experimental evidence for the “library” hypothesis, Mol. Biol. Evol., 1998, vol. 5, pp. 1062–1068.CrossRefGoogle Scholar
  19. Mravinac, B. and Plohl, M., Satellite DNA junctions identify the potential origin of new repetitive elements in the beetle Tribolium madens, Gene, 2007, vol. 394, pp. 45–52.PubMedCrossRefGoogle Scholar
  20. Palomeque, T., Muñoz-López, M., Carrillo, J.A., and Lorite, P., Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae), Chromosome Res., 2005, vol. 13, pp. 795–807.PubMedCrossRefGoogle Scholar
  21. Podgornaya, O.I., Voronin, A.P., Enukashvily, N.I., Matveev, I.V., and Lobov, I.B., Structure-specific DNA-binding proteins as the foundation for three-dimensional chromatin organization, Int. Rev. Cytol., 2003, vol. 224, pp. 227–296.PubMedGoogle Scholar
  22. Podgornaya, O. I., Ostromishensky, D.I., Kuznetsova, I. S., Matveev, I.V., and Komissarov, A.S., Heterochromatin and centromere structure paradox, Tsitologiia, 2009, vol. 51, no. 3, pp. 204–211.Google Scholar
  23. Siracusa, L.D., Chapman, V.M., Bennett, K.L., Hastie, N.D., Pietras, D.F., and Rossant, J., Use of repetitive DNA sequences to distinguish Mus musculus and Mus caroli cells by in situ hybridization, J. Embryol. Exp. Morphol., 1983, vol. 73, pp. 163–178.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. I. Ostromyshenskii
    • 1
  • I. S. Kuznetsova
    • 1
  • A. S. Komissarov
    • 1
  • I. V. Kartavtseva
    • 2
  • O. I. Podgornaya
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Biology and Soil SciencesFar East Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations