Cell and Tissue Biology

, Volume 9, Issue 2, pp 119–126 | Cite as

Long-term cultivation of Chinese hamster fibroblasts V-79 RJK under elevated temperature results in karyotype destabilization

  • T. M. Grinchuk
  • M. A. Shilina
  • L. L. Alekseenko


In this article, we show that long-term cultivation of Chinese hamster fibroblasts V-79 RJK at elevated temperature resulted in the selection of variants with genetic changes at the level of karyotype. Beginning at the first steps of thermoresistance (to a temperature of 40°C) selection, we identified a population of cells with changes in the karyotype (polyploidy, deletions, inversions, chromosomal translocations, cells with DM-chromosomes). Further cultivation was accompanied with selection of cells with breaks near centromeres and homogeneously staining regions on chromosomes. Nonspecific destabilization of the karyotype (at the initial stages of selection) was accompanied with increased gene expression of hsc70 (constitutive iso-form of heat shock protein of the HSP70 family) and pgp1 (p-glycoprotein membrane transporter). Expression of these genes returned to the basal level during long-term cultivation at the elevated temperature, but the cells retained karyotypic changes.


heat shock proteins hyperthermia karyotype destabilization stress temperature resistance 



homogeneously staining region


additional genetic material


double minute chromosome


multidrug resistance


reverse transcription


polymerase chain reaction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekseenko, L.L., Zemelko, V.I., Zenin, V.V., Pugovkina, N.A., Kozhukharova, I.V., Kovaleva, Z.V., Grinchuk, T.M., Fridlyanskaya, I.I., and Nikolsky, N.N., Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny, Cell Cycle, 2012, vol. 11, pp. 3260–3269.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Baker, D.E., Harrison, N.J., Maltby, E., Smith, K., Moore, H.D., Shaw, P.J., Heath, P.R., Holden, H., and Andrews, P.W., Adaptation to culture of human embryonic stem cells and oncogenesis in vivo, Nat. Biotechnol., 2007, vol. 25, pp. 207–215.CrossRefPubMedGoogle Scholar
  3. Bhuyan, B.K., Day, K.J., Edgerton, C.E., and Ogunbase, O., Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia, Cancer Res., 1977, vol. 37, pp. 3780–3784.PubMedGoogle Scholar
  4. Boulon, S., Westman, B.J., Hutten, S., Boisvert, F.M., and Lamond, A.I., The nucleolus under stress, Mol. Cell., 2010, vol. 40, pp. 216–227.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction, Analyt. Biochem., 1987, vol. 162, no. 1, pp. 156–159.CrossRefPubMedGoogle Scholar
  6. Dekaban, A., Persisting clone of cells with an abnormal chromosome in a woman previously irradiated, J. Nucl. Med., 1965, vol. 760, pp. 740–745.Google Scholar
  7. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O., Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell, 2000, vol. 11, pp. 4241–4257.CrossRefPubMedCentralPubMedGoogle Scholar
  8. Grinchuk, T.M., Ignatova, T.N., Sorokina, E.A., Artsybasheva, I.V., and Panshina, Yu.T., Chromosome polymorphism in mammalian cells with multidrug resistance. I. Karyotypic alanalysis of Chinese hamster cells resistant to ethidium bromide at the early passages of initial selection steps, Tsitologiia, 1988, vol. 30, no. 3, pp. 312–320.PubMedGoogle Scholar
  9. Grinchuk, T.M., Lipskaya, L.A., Artsybasheva, I.V., Sorokina, E.A., Panshina, Yu.T., and Ignatova, T.N., Karyotype variability in the Chinese hamster lung V-79 RJK cells with multidrug resulting from MDR genes amplification, Tsitologiia, 1996, vol. 38, no. 2, pp. 161–172.PubMedGoogle Scholar
  10. Harmon, B.V., Corder, A.M., Collins, R.J., Gobe, G.C., Allen, J., Allan, D.J., and Kerr, J.F., Cell death induced in a murine mastocytoma by 42–47 degrees C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load, Int. J. Radiat. Biol., 1990, vol. 58, pp. 845–858.CrossRefPubMedGoogle Scholar
  11. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., and Riess, H., The cellular and molecular basis of hyperthermia, Crit Rev. Oncol. Hematol., 2002, vol. 43, pp. 33–56.CrossRefPubMedGoogle Scholar
  12. Konstantinova, M.F., Nisman, B.Kh., and Ignatova, T.N., Selection and phenotypic features of heat resistant cells of line CHO-K1, Tsitologiia, 1994, vol. 36, no. 2, pp. 182–188.PubMedGoogle Scholar
  13. Kregel, K.C., Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance, J. Appl. Physiol., 2002, vol. 92, pp. 2177–2186.CrossRefPubMedGoogle Scholar
  14. Limoli, C.L., Kaplan, M.I., Phillips, J.W., Adair, G.M., and Morgan, W.F., Differential induction of chromosomal instability by DNA strand-breaking agents, Cancer Res., 1997, vol. 57, pp. 4048–4056.PubMedGoogle Scholar
  15. Morgan, W.F., Day, J.P., Kaplan, M.I., Mc, Ghee, E.M., and Limoli, C.L., Genomic instability induced by ionizing radiation, Radiat. Res., 1996, vol. 146, pp. 247–258.CrossRefPubMedGoogle Scholar
  16. Palzer, R.J. and Heidelberger, C., Studies on the quantitative biology of hyperthermic killing of HeLa cells, Cancer Res., 1973, vol. 33, pp. 415–421.PubMedGoogle Scholar
  17. Ray, M. and Mohandas, T., Proposed banding nomenclature for the Chinese hamster chromosomes (Cricetulus gruseus), Cytogenet. Cell Genet., 1975, vol. 16, pp. 83–91.Google Scholar
  18. Richter, K., Haslbeck, M., and Buchner, J., The heat shock response: life on the verge of death, Mol. Cell., 2010, vol. 40, pp. 253–266.CrossRefPubMedGoogle Scholar
  19. Tabuchi, Y., Takasaki, I., Wada, S., Zhao, Q.L., Hori, T., Nomura, T., Ohtsuka, K., and Kondo, T., Genes and genetic networks responsive to mild hyperthermia in human lymphoma U937 cells, Int. J. Hyperth., 2008, vol. 24, pp. 613–622.CrossRefGoogle Scholar
  20. Toivola, D.M., Strnad, P., Habtezion, A., and Omary, M.B., Intermediate filaments take the heat as stress proteins, Trends Cell Biol., 2010, vol. 20, pp. 79–91.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Tomita, M., Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death, Radiat. Res., 2010, vol. 51, pp. 493–501.CrossRefGoogle Scholar
  22. Van der Waal, R., Malyapa, R.S., Higashikubo, R., and Roti, J.L., A comparison of the modes and kinetics of heat-induced cell killing in HeLa and L5178Y cells, Radiat. Res., 1997, vol. 148, pp. 455–462.CrossRefGoogle Scholar
  23. Vogel, J.L., Parsell, D.A., and Lindquist, S., Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation, Curr. Biol., 1995, vol. 5, pp. 306–317.CrossRefPubMedGoogle Scholar
  24. Warters, R.L., Brizgys, L.M., and Axtell-Bartlett, J., DNA damage production in CHO cells at elevated temperatures, J. Cell Physiol., 1985, vol. 124, pp. 481–486.CrossRefPubMedGoogle Scholar
  25. Welch, W.J. and Suhan, J.P., Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol., 1985, vol. 101, pp. 1198–1211.CrossRefPubMedGoogle Scholar
  26. Welch, W.J., Kang, H.S., Beckmann, R.P., and Mizzen, L.A., Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins, Curr. Top. Microbiol. Immunol., 1991, vol. 167, pp. 31–55.PubMedGoogle Scholar
  27. Westra, A. and Dewey, W.C., Variation in sensitivity to heat shock during the cell-cycle of chinese hamster cells in vitro, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1971, vol. 19, pp. 467–477.CrossRefPubMedGoogle Scholar
  28. Wong, R.S., Thompson, L.L., and Dewey, W.C., Recovery from effects of heat on DNA synthesis in Chinese hamster ovary cells, Radiat. Res., 1988, vol. 114, pp. 125–137.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • T. M. Grinchuk
    • 1
  • M. A. Shilina
    • 1
  • L. L. Alekseenko
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations