Advertisement

Cell and Tissue Biology

, Volume 6, Issue 5–6, pp 498–502 | Cite as

The effect of environmental salinity on the level of heat shock proteins in gill epithelium of Mytilus edilis L. mussel

  • Y. I. Podlipaeva
  • V. Ya. Berger
Article

Abstract

The composition and the level of heat shock proteins in the gill epithelium cells of mussels Mytilus edulis L. from the White Sea under different levels of environmental salinity were studied by the method of immunoblotting. In mussels maintained under normal salinity (26%), constitutive Hsp70 and protein of about 40 kDa were revealed. After long-term (11–14 days) acclimation to 14 and 35‰ of the level Hsp70 in gill epithelium cells increased. Hsp70 induction was also observed in cells of isolated gills after salinity shock at 14% for 3 and 24 h.

Keywords

heat shock proteins Hsp70 salinity mussels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babkov, A.I., Gidrologiya Belogo Morya (White Sea Hydrology), St. Petersburg: Zool. Inst. Ros. Akad. Nauk, 1998.Google Scholar
  2. Berger, V.Ya., Adaptatsii morskikh mollyuskov k izmeneniyam solenosti sredy (Adaptations of Marine Mollusks to Changes in Ambient Salinity), Leningrad: Nauka, 1986.Google Scholar
  3. Berger, V.Ya., On the Minimal Terms of Triggering the Processes of Phenotypic Adaptation, Dokl. Biol. Sci., 2005, vol. 400, pp. 57–61.CrossRefGoogle Scholar
  4. Berger, V.Ya. and Kharazova, A.D., Mechanisms of Salinity Adaptations in Marine Molluscs, Hydrobiologia, 1997, vol. 7, pp. 1–12.Google Scholar
  5. Berger, V.Ya. and Lukanin, V.V., Adaptive Responses of White Sea Mussels to Changes in Water Salinity, in Biologicheskie resursy Belogo morya i ikh ratsional’noe ispol’zovanie. Issledovanie midii Belogo morya (Biological Resources of the White Sea and Their Sustainable Use: Investigation of White Sea Mussels), Leningrad: Zool. Inst. Akad. Nauk SSSR, 1985, pp. 4–21.Google Scholar
  6. Black, R.E. and Bloom, L., Heat Shock Proteins in Aurelia (Cnidaria, Scyphozoa), J. Exp. Zool., 1984, vol. 230, pp. 303–307.PubMedCrossRefGoogle Scholar
  7. Cohen, D.A., Wasserman, J., and Gullans, S., Immediate Early Gene and HSP70 Expression in Hyperosmotic Stress in MDCK Cells, Am. J. Physiol., 1991, vol. 261, pp. 594–601.Google Scholar
  8. Ermilova, E.V., Molekulyarnye aspekty adaptatsii prokariot (Molecular Aspects of Prokaryote Adaptation), St. Petersburg: Izd. S.-Peterb. Gos. Univ., 2007.Google Scholar
  9. Feder, M.E. and Hofmann, G.E., Heat-Shock Proteins, Molecular Chaperones, and the Stress Response: Evolutionary and Ecological Physiology, Annu. Rev. Physiol., 1999, vol. 61, pp. 243–282.PubMedCrossRefGoogle Scholar
  10. Hochachka, P.V. and Somero, G.N., Biochemical Adaptation. Mechanism and Process in Physiological Evolution, Oxford: Oxford Univ. Press, 2002.Google Scholar
  11. Kharazova, A.D., Cytological Basis of Adaptation of Marine Molluscs to Changes in Salinity, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: Izd. S.-Peterb. Univ., 1999.Google Scholar
  12. Li, H., Toubiana, M., Monford, P., and Roch, P., Influence of Temperature, Salinity and E. coli Tissue Content of Immune Gene Expression in Mussel: Results from a 2005–2008 Survey, Develop. Compar. Immunol., 2009, vol. 33, pp. 974–979.CrossRefGoogle Scholar
  13. Margulis, B.A. and Guzhova, I.V., Stress Proteins in Eukaryotic Cells, Tsitologiia, 2000, vol. 42, no. 4, pp. 323–342.PubMedGoogle Scholar
  14. Margulis, B.A., and Guzhova, I.V., Dual Role of Chaperones in the Response of a Cell and of a Whole Organism to Stress, Tsitologiia, 2009, vol. 51, no. 3, pp. 219–228.PubMedGoogle Scholar
  15. Petronini, P., De Angelis, W., Borghetti, A., and Wheeler, K., Effect of Betaine on HSP70 Expression and Cell Survival during Adaptation to Osmotic Stress, Biochem. J., 1993, vol. 293, pp. 553–558.PubMedGoogle Scholar
  16. Plekhanov, A.Yu., Smurov, A.O., Podlipaeva, Yu.I., Ivanova, L.O., and Goodkov, A.V., Heat Shock Proteins of Freshwater Protists and Their Involvement in Adaptation to Changes in the Environmental Salinity, Tsitologiia, 2006, vol. 48, no. 6, pp. 530–534.PubMedGoogle Scholar
  17. Podlipaeva, Y.I., Heat Shock Protein of 70 kDa in Amoeba proteus, Protistology, 2001, vol. 2, pp. 123–129.Google Scholar
  18. Podlipaeva, Yu.I., Smurov, A.O., and Goodkov, A.V., Alterations of the Level of 70 kDa Family Heat Shock Protein in the Ciliate Tetrahymena pyriformis in the Process of the Cells Adaptation to the Medium Salinity Changes, Tsitologiia, 2008, vol. 50, no. 7, pp. 619–622.PubMedGoogle Scholar
  19. Shevchenko, A., Wilm, M., Vokm, O., and Mann, M., Mass Spectrometric Sequencing of Proteins Silver-Stained Polyacrylamide Gels, Anal. Chem., 1996, vol. 68, pp. 850–858.PubMedCrossRefGoogle Scholar
  20. Smurov, A.O., Podlipaeva, Yu.I., and Goodkov, A.V., Heat Shock Protein of the Hsp70 Family in the Euryhaline Cilate Paramecium nephridiatum and Its Role in Adaptation to Salinity Changes, Tsitologiia, 2007, vol. 1, no. 3, pp. 244–247.Google Scholar
  21. Tomanek, L. and Somero, G.N., Time Course and Magnitude of Synthesis of Heat-Shock Proteins in Congeneric Marine Snails (genus Tegula) from Different Tidal Heights, Physiol. Biochem. Zool., 2000, vol. 73, pp. 249–256.PubMedCrossRefGoogle Scholar
  22. Towbin, H., Staeheln, T., and Gordon, J., Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 4350–4354.PubMedCrossRefGoogle Scholar
  23. Werner, I., The Influence of Salinity on Heat Shock Protein Response of Potamocorbula amurensis (Bivalvia), Mar. Environ. Res., 2004, vol. 58, pp. 803–807.PubMedCrossRefGoogle Scholar
  24. Werner, I. and Hinton, D.E., Spatial Profiles of Hsp70 Proteins in Asian Clam Potamocorbula amurensis in Northern San Francisco Bay May Be Linked to Natural Rather than Anthropogenic Stressors, Mar. Environ. Res., 2000, vol. 50, pp. 379–384.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations