Cell and Tissue Biology

, Volume 6, Issue 5–6, pp 412–422 | Cite as

Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes in the yellow mealworm Tenebrio molitor

  • D. S. BogolyubovEmail author
  • A. M. Kiselyov
  • S. V. Shabelnikov
  • V. N. Parfenov


The nucleus of vitellogenic oocytes of the yellow mealworm Tenebrio molitor contains a karyosphere that consists of condensed chromatin embedded in an extrachromosomal fibrogranular material. Numerous nuclear bodies located freely in the nucleoplasm are also observed. Amongst these bodies, counterparts of nuclear speckles (= interchromatin granule clusters (IGCs)) can be identified by the presence of the marker protein SC35. Microinjections of fluorescently tagged 2′-O-Me(U)22 methyl oligoribonucleotide probes, complementary to poly(A) tails of RNAs, revealed poly(A)+ RNA in the vast majority of IGCs. We found that all T. molitor oocyte IGCs contain heterogeneous ribonucleoprotein (hnRNP) core protein A1 localized to IGCs in an RNA-dependent manner. The extrachromosomal material of the karyosphere and some nucleoplasmic IGCs also contain the adapter protein Aly known to provide a link between pre-mRNA splicing and mRNA export. The essential mRNA export factor/receptor NXF1 was colocalized with Aly. In nucleoplasmic IGCs, NXF1 was found to localize in an RNA-dependent manner, whereas it was RNA-independently located in the extrachromosomal material of the karyosphere. We believe our data provide evidence for the implication of nucleoplasmic IGCs in mRNA biogenesis and retention on the path to nuclear export.


Tenebrio molitor oocyte nucleus nuclear bodies interchromatin granule clusters laser scanning confocal microscopy 



heterogeneous nuclear RNP


interchromatin granule cluster


fibrogranular material


nuclear export factor 1


spliceosome component 35


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksandrova, O.A., The Intranuclear Bodies and Karyosphere Capsule Formation in Oocytes of the Darkling Beetle Tentyria nomas taurica, Tsitologiia, 1992, vol. 34, no. 6, pp. 30–37.Google Scholar
  2. Büning, J., The Insect Ovary: Ultrastructure, Previtellogenic Growth and Evolution, London: Chapman and Hall, 1994.Google Scholar
  3. Batalova, F.M., Stepanova, I.S., Skovorodkin, I.N., Bogolyubov, D.S., and Parfenov, V.N., Identification and Dynamics of Cajal Bodies in Relation to Karyosphere Formation in Scorpionfly Oocytes, Chromosoma, 2005, vol. 113, pp. 428–439.PubMedCrossRefGoogle Scholar
  4. Batalova, F.M., Bogolyubov, D.S., and Parfenov, V.N., Interchromatin Granule Clusters of the Scorpionfly Oocytes Contain Poly(A)+ RNA, Heterogeneous Ribonucleoproteins A/B, and mRNA Export Factor NXF1, Cell Biol. Int., 2010, vol. 34, pp. 1163–1170.PubMedCrossRefGoogle Scholar
  5. Batalova, F.M., Kiselev, A.M., Stepanova, I.S., and Bogolyubov, D.S., Karyosphere Capsule of the Laboratory Insect Tribolium castaneum as a Component of Oocyte Nuclear Matrix, Tsitologiia, 2011, vol. 53, no. 9, pp. 692–693.Google Scholar
  6. Berry, S.J., RNA Synthesis and Storage during Insect Oogenesis, in Developmental Biology. A Comprehensive Synthesis, New York: Plenum Press, 1985, pp. 351–384.Google Scholar
  7. Bogolyubov, D., Localization of RNA Transcription Sites in Insect Oocytes Using Microinjections of 5-Bromouridine 5′-Triphosphate, Folia Histochem. Cytobiol., 2007, vol. 45, pp. 129–134.PubMedGoogle Scholar
  8. Bogolyubov, D. and Parfenov, V., Immunogold Localization of RNA Polymerase II and Pre-mRNA Splicing Factors in Tenebrio molitor Oocyte Nuclei with Special Emphasis on Karyosphere Development, Tissue Cell, 2001, vol. 33, pp. 549–561.PubMedCrossRefGoogle Scholar
  9. Bogolyubov, D. and Parfenov, V., Structure of the Insect Oocyte Nucleus with Special Reference to Interchromatin Granule Clusters and Cajal Bodies, Int. Rev. Cell Mol. Biol., 2008, vol. 269, pp. 59–110.PubMedCrossRefGoogle Scholar
  10. Bogolyubov, D.S. and Parfenov, V.N., Polyfunctionality—A Common Property of Extrachromosomal Universal Nucleoplasm Domains, Tsitologiia, 2010, vol. 52, no. 8, pp. 644–645.Google Scholar
  11. Bogolyubov, D., Alexandrova, O., Tsvetkov, A., and Parfenov, V., An Immunoelectron Study of Karyosphere and Nuclear Bodies in Oocytes of Mealworm Beetle, Tenebrio molitor (Coleoptera: Polyphaga), Chromosoma, 2000, vol. 109, pp. 415–425.PubMedCrossRefGoogle Scholar
  12. Bogolyubov, D., Stepanova, I., and Parfenov, V., Universal Nuclear Domains of Somatic and Germ Cells: Some Lessons from Oocyte Interchromatin Granule Cluster and Cajal Body Structure and Molecular Composition, BioEssays, 2009, vol. 31, pp. 400–409.PubMedCrossRefGoogle Scholar
  13. Bogolyubova, I., Bogolyubov, D., and Parfenov, V., Localization of Poly(A)+ RNA and mRNA Export Factors in Interchromatin Granule Clusters of Two-Cell Mouse Embryos, Cell Tiss. Res., 2009, vol. 338, pp. 271–281.CrossRefGoogle Scholar
  14. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.PubMedCrossRefGoogle Scholar
  15. Brown, J.M., Green, J., Pires, das, Neves, R., Wallace, H.A.C., Smith, A.J.H., Hughes, J., Gray, N., Taylor, S., Wood, W.G., Higgs, D.R., Iborra, F.J., and Buckle, V.J., Association between Active Genes Occurs at Nuclear Speckles and Is Modulated by Chromatin Environment, J. Cell Biol., 2008, vol. 182, pp. 1083–1097.PubMedCrossRefGoogle Scholar
  16. Calado, A. and Carmo-Fonseca, M., Localization of Poly(A)-Binding Protein 2 (PABP2) in Nuclear Speckles is Independent of Import into the Nucleus and Requires Binding to Poly(A) RNA, J. Cell Sci., 2000, vol. 113, pp. 2309–2318.PubMedGoogle Scholar
  17. Carter, K.C., Taneja, K.L., and Lawrence, J.B., Discrete Nuclear Domains of Poly(A) RNA and Their Relationship to the Functional Organization of the Nucleus, J. Cell Biol., 1991, vol. 115, pp. 1191–1202.PubMedCrossRefGoogle Scholar
  18. Carter, K.C., Bowman, D., Carrington, W., Fogarty, K., McNeil, J.A., Fay, F.S., and Lawrence, J.B., A Three-Dimensional View of Precursor Messenger RNA Metabolism within the Mammalian Nucleus, Science, 1993, vol. 259, pp. 1330–1335.PubMedCrossRefGoogle Scholar
  19. DiMario, P.J., Bromley, S.E., and Gall, J.G., DNA-Binding Proteins on Lampbrush Chromosome Loops, Chromosoma, 1989, vol. 97, pp. 413–420.PubMedCrossRefGoogle Scholar
  20. Dreyfuss, G., Matunis, M.J., Piñol-Roma, S., and Burd, C.G., hnRNP Proteins and the Biogenesis of mRNA, Annu. Rev. Biochem., 1993, vol. 62, pp. 289–321.PubMedCrossRefGoogle Scholar
  21. Erkmann, J.A. and Kutay, U., Nuclear Export of mRNA: From the Site of Transcription to the Cytoplasm, Exp. Cell Res., 2004, vol. 296, pp. 12–20.PubMedCrossRefGoogle Scholar
  22. Fu, X.-D. and Maniatis, T., Factor Required for Mammalian Spliceosome Assembly Is Localized to Discrete Regions in the Nucleus, Nature, 1990, vol. 343, pp. 437–441.PubMedCrossRefGoogle Scholar
  23. Fuda, N.J., Ardehali, M.B., and Lis, J.T., Defining Mechanisms that Regulate RNA Polymerase II Transcription in vivo, Nature, 2009, vol. 461, pp. 186–192.PubMedCrossRefGoogle Scholar
  24. Gruzova, M.N., Ultrastructure of the Karyosphere in Darkling Beetles (Tenebrionidae, Coleoptera-Polyphaga), Monit. Zool. Ital., 1982, vol. 16, pp. 231–246.Google Scholar
  25. Gruzova, M.N. and Parfenov, V.N., Karyosphere in Oogenesis and Intranuclear Morphogenesis, Int. Rev. Cytol., 1993, vol. 144, pp. 1–52.PubMedCrossRefGoogle Scholar
  26. Hall, L.L., Smith, K.P., Byron, M., and Lawrence, J.B., Molecular Anatomy of a Speckle, Anat. Rec. A Discov. Mol. Cell Evol. Biol., 2006, vol. 288, pp. 664–675.PubMedGoogle Scholar
  27. Herold, A., Klymenko, T., and Izaurralde, E., NXF1/p15 Heterodimers Are Essential for mRNA Nuclear Export in Drosophila, RNA, 2001, vol. 7, pp. 1768–1780.PubMedGoogle Scholar
  28. Holt, I., Mittal, S., Furling, D., Butler-Browne, G.S., Brook, J.D., and Morris, G.E., Defective mRNA in Myotonic Dystrophy Accumulates at the Periphery of Nuclear Splicing Speckles, Genes Dev., 2007, vol. 12, pp. 1035–1048.Google Scholar
  29. Hu, Q., Kwonb, Y.-S., Nunez, E., Cardamone, M.D., Hutt, K.R., Ohgi, K.A., Garcia-Bassets, I., Rose, D.W., Glass, C.K., Rosenfeld, M.G., and Fu, X.-D., Enhancing Nuclear Receptor-Induced Transcription Requires Nuclear Motor and LSD1-Dependent Gene Networking in Interchromatin Granules, 2008, vol. 105, pp. 19199–19204.Google Scholar
  30. Huang, S. and Spector, D.L., Dynamic Organization of Pre-mRNA Splicing Factors, J. Cell Biochem., 1996, vol. 62, pp. 191–197.PubMedCrossRefGoogle Scholar
  31. Huang, S., Deerinck, T.J., Ellisman, M.H., and Spector, D.L., In vivo Analysis of the Stability and Transport of Nuclear Poly(A)+ RNA, J. Cell Biol., 1994, vol. 126, pp. 877–899.PubMedCrossRefGoogle Scholar
  32. Hutchinson, J.N., Ensminger, A.W., Clemson, C.M., Lynch, C.R., Lawrence, J.B., and Chess, A., A Screen for Nuclear Transcripts Identifies Two Linked Noncoding RNAs Associated with SC35 Splicing Domains, BMC Genomics, 2007, vol. 8, p. 39.PubMedCrossRefGoogle Scholar
  33. Ishihama, Y., Tadakuma, H., Tani, T., and Funatsu, T., The Dynamics of Pre-mRNAs and Poly(A)+ RNA at Speckles in Living Cells Revealed by IFRAP Studies, Exp. Cell Res., 2008, vol. 314, pp. 748–762.PubMedCrossRefGoogle Scholar
  34. Izaurralde, E., Jarmolowski, A., Beisel, C., Mattaj, I.W., Dreyfuss, G., and Fischer, U., A Role for the M9 Transport Signal of hnRNP A1 in mRNA Nuclear Export, J. Cell Biol., 1997, vol. 137, pp. 27–35.PubMedCrossRefGoogle Scholar
  35. Jaglarz, M.K., Nuclear Bodies in the Oocyte Nucleus of Ground Beetles are Enriched in snRNPs, Tissue Cell, 2001, vol. 33, pp. 395–401.PubMedCrossRefGoogle Scholar
  36. Johnson, C., Primorac, D., McKinstry, M., McNeil, J., Rowe, D., and Lawrence, J.B., Tracking COL1A1 RNA in Osteogenesis Imperfecta: Splice-Defective Transcripts Initiate Transport from the Gene but Are Retained within the SC35 Domain, J. Cell Biol., 2000, vol. 150, pp. 417–432.PubMedCrossRefGoogle Scholar
  37. Laemmli, U.K., Cleavage of Structural Proteins during Assembly of the head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.PubMedCrossRefGoogle Scholar
  38. Liu, J.-L., Buszczak, M., and Gall, J.G., Nuclear Bodies in the Drosophila Germinal Vesicle, Chromosome Res., 2006, vol. 14, pp. 465–475.PubMedCrossRefGoogle Scholar
  39. Long, J.C. and Caceres, J.F., The SR Protein Family of Splicing Factors: Master Regulators of Gene Expression, Biochem. J., 2009, vol. 417, pp. 15–27.PubMedCrossRefGoogle Scholar
  40. Majlessi, M., Nelson, N.C., and Becker, M.M., Advantages of 2’-O-Methyl Oligoribonucleotide Probes for Detecting RNA Targets, Nucleic Acids Res., 1998, vol. 26, pp. 2224–2229.PubMedCrossRefGoogle Scholar
  41. Mao, Y.S., Zhang, B., and Spector, D.L., Biogenesis and Function of Nuclear Bodies, Trends Genet., 2011, vol. 27, pp. 295–306.PubMedCrossRefGoogle Scholar
  42. Matera, A.G., Nuclear Bodies: Multifaceted Subdomains of the Interchromatin Space, Trends Cell Biol., 1999, vol. 9, pp. 302–309.PubMedCrossRefGoogle Scholar
  43. Melěák, I., Melčáková, Š., Kopsky’, V., Večeřová, J., and Raška, I., Prespliceosomal Assembly on Microinjected Precursor mRNA Takes Place in Nuclear Speckles, Mol. Biol. Cell., 2001, vol. 12, pp. 393–406.Google Scholar
  44. Misteli, T., Cell Biology of Transcription and Pre-mRNA Splicing: Nuclear Architecture Meets Nuclear Function, J. Cell Sci., 2000, vol. 113, pp. 1841–1849.PubMedGoogle Scholar
  45. Misteli, T. and Spector, D.L., RNA Polymerase II Targets Pre-mRNA Splicing Factors to Transcription Sites in vivo, Mol. Cell., 1999, vol. 3, pp. 697–705.PubMedCrossRefGoogle Scholar
  46. Misteli, T., Cáceres, J.F., and Spector, D.L., The Dynamics of a Pre-mRNA Splicing Factor in Living Cells, Nature, 1997, vol. 387, pp. 523–527.PubMedCrossRefGoogle Scholar
  47. Misteli, T., Cáceres, J.F., Clement, J.Q., Krainer, A.R., Wilkinson, M.F., and Spector, D.L., Serine Phosphorylation of SR Proteins Is Required for Their Recruitment to Sites of Transcription in vivo, J. Cell Biol., 1998, vol. 143, pp. 297–307.PubMedCrossRefGoogle Scholar
  48. Molenaar, C., Marras, S.A., Slats, J.C., Truffert, J.-C., Lemaître, M., Raap, A.K., Dirks, R.W., and Tanke, H.J., Linear 2′-O-Methyl RNA Probes for the Visualization of RNA in Living Cells, Nucleic Acids Res., 2001, vol. 29, p. e89.PubMedCrossRefGoogle Scholar
  49. Molenaar, C., Abdulle, A., Gena, A., Tanke, H.J., and Dirks, R.W., Poly(A)+ RNAs Roam the Cell Nucleus and Pass through Speckle Domains in Transcriptionally Active and Inactive Cells, J. Cell Biol., 2004, vol. 165, pp. 191–202.PubMedCrossRefGoogle Scholar
  50. Pandit, S., Wang, D., and Fu, X.-D., Functional Integration of Transcriptional and RNA Processing Machineries, Curr. Opin. Cell Biol., 2008, vol. 20, pp. 260–265.PubMedCrossRefGoogle Scholar
  51. Piñol-Roma, S. and Dreyfuss, G., Shuttling of Pre-mRNA Binding Proteins between Nucleus and Cytoplasm, Nature, 1992, vol. 355, pp. 730–732.PubMedCrossRefGoogle Scholar
  52. Piñol-Roma, S., and Dreyfuss, G., hnRNP Proteins: Localization and Transport between the Nucleus and the Cytoplasm, Trends Cell Biol., 1993, vol. 3, pp. 151–155.PubMedCrossRefGoogle Scholar
  53. Pochukalina, G.N., Bogolyubov, D.S., and Parfenov, V.N., Interchromatin Granule Clusters of Mouse Preovulatory Oocytes, Organization, Molecular Composition and Possible Functions, Tsitologiia, 2010, vol. 52, no. 1, pp. 30–40.PubMedGoogle Scholar
  54. Politz, J.C.R., Tuft, R.A., Prasanth, K.V., Baudendistel, N., Fogarty, K.E., Lifshitz, L.M., Langowski, J., Spector, D.L., and Pederson, T., Rapid, Diffusional Shuttling of Poly(A) RNA between Nuclear Speckles and the Nucleoplasm, Mol. Biol. Cell., 2006, vol. 17, pp. 1239–1249.PubMedCrossRefGoogle Scholar
  55. Puvion, E. and Puvion-Dutilleul, F., Ultrastructure of the Nucleus in Relation to Transcription and Splicing: Roles of Perichromatin Fibrils and Interchromatin Granules, Exp. Cell Res., 1996, vol. 229, pp. 217–225.PubMedCrossRefGoogle Scholar
  56. Schmidt, U., Im, K.-B., Benzing, C., Janjetovic, S., Rippe, K., Lichter, P., and Wachsmuth, M., Assembly and Mobility of Exon-Exon Junction Complexes in Living Cells, RNA, 2009, vol. 862–876.Google Scholar
  57. Shopland, L.S., Johnson, C.V., and Lawrence, J.B., Evidence that All SC-35 Domains Contain mRNAs and that Transcripts Can Be Structurally Constrained within these Domains, J. Struct. Biol., 2002, vol. 140, pp. 131–139.PubMedCrossRefGoogle Scholar
  58. Shopland, L.S., Johnson, C.V., Byron, M., McNeil, J., and Lawrence, J.B., Clustering of Multiple Specific Genes and Gene-Rich R-Bands Around SC-35 Domains: Evidence for Local Euchromatic Neighborhoods, J. Cell Biol., 2003, vol. 162, pp. 981–990.PubMedCrossRefGoogle Scholar
  59. Smith, K.P., Byron, M., Johnson, C., Xing, Y., and Lawrence, J.B., Defining Early Steps in mRNA Transport: Mutant mRNA in Myotonic Dystrophy Type I Is Blocked at Entry into SC-35 Domains, J. Cell Biol., 2007, vol. 178, pp. 951–964.PubMedCrossRefGoogle Scholar
  60. Spector, D.L. and Lamond, A.I., Nuclear Speckles, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, p. a000646.PubMedCrossRefGoogle Scholar
  61. Spector, D.L., Fu, X.-D., and Maniatis, T., Associations between Distinct Pre-mRNA Splicing Components and the Cell Nucleus, EMBO J., 1991, vol. 10, pp. 3467–3481.PubMedGoogle Scholar
  62. Stutz, F., Bachi, A., Doerks, T., Braun, I., Séraphin, B., Wilm, M., Bork, P., Izaurralde, E., REF, an Evolutionarily Conserved Family of hnRNP-Like Proteins, Interacts with TAP/Mex67p and Participates in mRNA Nuclear Export, RNA, 2000, vol. 6, pp. 638–650.PubMedCrossRefGoogle Scholar
  63. Tokunaga, K., Shibuya, T., Ishihama, Y., Tadakuma, H., Ide, M., Yoshida, M., Funatsu, T., Ohshima, Y., and Tani, T., Nucleocytoplasmic Transport of Fluorescent mRNA in Living Mammalian Cells: Nuclear mRNA Export is Coupled to Ongoing Gene Transcription, Genes Cells, 2006, vol. 11, pp. 305–317.PubMedCrossRefGoogle Scholar
  64. Towbin, H., Staehelin, T., and Gordon, G., Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 4350–4356.PubMedCrossRefGoogle Scholar
  65. Ullmann, S.L., Oogenesis in Tenebrio molitor: Histological and Autoradiographical Observations on Pupal and Adult Ovaries, J. Embryol. Exp. Morphol., 1973, vol. 30, pp. 179–217.PubMedGoogle Scholar
  66. Visa, N., Alzhanova-Ericsson, A.T., Sun, X., Kiseleva, E., Björkroth, B., Wurtz, T., and Daneholt, B., A Pre-mRNA-Binding Protein Accompanies the RNA from the Gene through the Nuclear Pores and into Polysomes, Cell, 1996, vol. 84, pp. 253–264.PubMedCrossRefGoogle Scholar
  67. Visa, N., Puvion-Dutilleul, F., Harper, F., Bachellerie, J.P., and Puvion, E., Intranuclear Distribution of Poly(A)+ RNA Determined by Electron Microscope in situ Hybridization, Exp. Cell Res., 1993, vol. 208, pp. 19–34.PubMedCrossRefGoogle Scholar
  68. Wilkie, G.S., Zimyanin, V., Kirby, R., Korey, C., Francis-Lang, H., Van, Vactor, D., and Davis, I., Small Bristles, the Drosophila Ortholog of NXF-1, Is Essential for mRNA Export throughout Development, RNA, 2001, vol. 7, pp. 1781–1792.PubMedGoogle Scholar
  69. Zhou, Z., Luo, M.J., Straesser, K., Katahira, J., Hurt, E., and Reed, R., The Protein Aly Links Pre-messenger-RNA Splicing to Nuclear Export in Metazoans, Nature, 2000, vol. 407, pp. 401–405.PubMedCrossRefGoogle Scholar
  70. Zorio, D.A.R. and Bentley, D.L., The Link between mRNA Processing and Transcription: Communication Works Both Ways, Exp. Cell Res., 2004, vol. 296, pp. 91–97.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. S. Bogolyubov
    • 1
    Email author
  • A. M. Kiselyov
    • 1
  • S. V. Shabelnikov
    • 1
  • V. N. Parfenov
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations