Cell and Tissue Biology

, Volume 6, Issue 1, pp 1–11 | Cite as

Multipotent mesenchymal stem cells of desquamated endometrium: Isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells

  • V. I. Zemelko
  • T. M. Grinchuk
  • A. P. Domnina
  • I. V. Artzibasheva
  • V. V. Zenin
  • A. A. Kirsanov
  • N. K. Bichevaia
  • V. S. Korsak
  • N. N. Nikolsky


In this study, we characterize new multipotent human mesenchymal stem cell lines (MSCs) derived from desquamated (shedding) endometrium of menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSCs of any origin. The eMSCs have positive expression of CD13, CD29, CD44, CD73, CD90, and CD105 markers and lack hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130, and HLA-DR (class II). Multipotency of the established eMSCs is confirmed by their ability to differentiate into other mesodermal lineages, such as osteocytes and adipocytes. In addition, the isolated eMSCs partially (over 50%) express the pluripotency marker SSEA-4. However, they do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and β-III-tubulin. This suggests a neural predisposition of the established eMSCs. These cells are characterized by a high proliferation rate (doubling time 22–23 h) and a high colony-forming efficiency (about 60%). In vitro, the eMSCs undergo more than 45 population doublings without karyotypic abnormalities. We demonstrate that mitotically inactivated eMSCs are perfect feeder cells for maintenance of human embryonic stem cell lines (hESCs) C612 and C910. The eMSCs, being a feeder culture, sustain the hESC pluripotent status that verified by expression of Oct-4, alkaline phosphatase and SSEA-4 markers. The hESCs cocultured with the eMSCs retain their morphology and proliferative rate for more than 40 passages and exhibit the capability for spontaneous differentiation into embryoid bodies comprising three embryonic germ layers. Thus, an easy and noninvasive isolation of the eMSCs from menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESCs to clinical setting.


human mesenchymal stem cells of endometrium menstrual blood multipotency differentiation feeder culture human embryonic stem cells 



mesenchymal stem cells


endometrial MSCs


mouse embryonic fibroblasts


human embryonic stem cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blondheim, N.R., Levy, Y.S., Ben-Zur, T., Burshtein, A., Cherlow, T., Kan, I., Barzilai, R., Bahat-Stromza, M., Barhum, Y., Bulvik, S., Melamed, E., and Offen, D., Human Mesenchymal Stem Cells Express Neural Genes, Suggesting a Neural Predisposition, Stem Cells Dev., 2006, vol. 15, pp. 141–164.PubMedCrossRefGoogle Scholar
  2. Borlongan, C.V., Kaneko, Y., Maki, M., Yu, S.J., Ali, M., Allickson, J.G., Sanberg, C.D., Kuzmin-Nichols, N., and Sanberg, P.R., Menstrual Blood Cells Display Stem Cell-Like Phenotypic Markers and Exert Neuroprotection Following Transplantation in Experimental Stroke, Stem Cells Dev., 2010, vol. 19, pp. 439–452.PubMedCrossRefGoogle Scholar
  3. Carpenter, M.K., Rosler, E.S., Gregory, J., Fisk, J.G., Brandenberger, R., Ares, X., Miura, T., Lucero, M., and Rao, M.S., Properties of Four Human Embryonic Stem Cells Lines Maintained in a Feeder-Free Culture System, Dev. Dynam., 2004, vol. 229, pp. 243–258.CrossRefGoogle Scholar
  4. Challen, G.A., and Little, M., A Side Order of Stem Cells: The SP Phenotype, Stem Cells, 2006, vol. 24, pp. 3–12.PubMedCrossRefGoogle Scholar
  5. Chen, L., He, D.M., and Zhang, Y., The Differentiation of Human Placenta-Derived Mesenchymal Stem Cells into Dopaminergic Cells in vitro, Cell. Mol. Biol. Lett., 2009, vol. 14, pp. 528–536.PubMedCrossRefGoogle Scholar
  6. Cho, N.H., Park, Y.K., Kim, Y.T., Yang, H., and Kim, S.K., Lifetime Expression of Stem Cell Markers in the Uterine Endometrium, Fertil. Steril., 2004, vol. 81, pp. 403–407.PubMedCrossRefGoogle Scholar
  7. Cui, C.H., Uyama, T., Miyado, K., Terai, M., Kyo, S., Kiyono, T., and Umezawa, A., Menstrual Blood-Derived Cells Confer Human Dystrophin Expression in the Murine Model of Duchenne Muscular Dystrophy via Cell Fusion and Myogenic Transdifferentiation, Mol. Biol. Cell, 2007, vol. 18, pp. 1586–1594.PubMedCrossRefGoogle Scholar
  8. De, Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S., and Atala, A., Isolation of Amniotic Stem Cell Lines with Potential for Therapy, Nat. Biotechnol., 2007, vol. 25, pp. 100–106.PubMedCrossRefGoogle Scholar
  9. Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I., and Frolova, G.P., Heterotopic of Bone Marrow. Analysis of Precursor Cells for Osteogenic and Hematopoietic Tissues, Transplantation, 1968, vol. 6, pp. 230–247.PubMedCrossRefGoogle Scholar
  10. Gang, E.J., Bosnakovski, D., Figueiredo, C.A., Visser, J.W., and Perlingeiro, R.C., SSEA-4 Identifies Mesenchymal Stem Cells from Bone Marrow, Blood, 2007, vol. 109, pp. 1743–1751.PubMedCrossRefGoogle Scholar
  11. Gargett, C.E., and Masuda, H., Adult Stem Cells in the Endometrium, Mol. Hum. Reprod., 2010, vol. 16, pp. 818–834.PubMedCrossRefGoogle Scholar
  12. Gargett, C.E., Identification and Characterization of Human Endometrial Stem/Progenitor Cells, Aust. Nz J. Obstet. Gynaecol., 2006, vol. 46, pp. 250–253.CrossRefGoogle Scholar
  13. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C., Isolation and Functional Properties of Murine Hematopoietic Stem Cells that Are Replicating in vivo, J. Exp. Med., 1996, vol. 183, pp. 1797–1806.PubMedCrossRefGoogle Scholar
  14. Han, X., Meng, X., Yin, Z., Rogers, A., Zhong, J., Rillema, P., Jackson, J.A., Ichim, T.E., Minev, B., Carrier, E., Patel, A.N., Murphy, M.P., Min, W.P., and Riordan, N.H., Inhibition of Intracranial Glioma Growth by Endometrial Regenerative Cells, Cell Cycle, 2009, vol. 8, pp. 606–610.PubMedCrossRefGoogle Scholar
  15. Harris, D.T., Badowski, M., Ahmad, N., and Gaballa, M.A., The Potential of Cord Blood Stem Cells for Use in Regenerative Medicine, Expert. Opin. Biol. Ther., 2007, vol. 7, pp. 1311–1322.PubMedCrossRefGoogle Scholar
  16. Hida, N., Nishiyama, N., Miyoshi, S., Kira, S., Segawa, K., Uyama, T., Mori, T., Miyado, K., and Ikegami, Y., Novel Cardiac Precursor-Like Cells from Human Menstrual Blood-Derived Mesenchymal Cells, Stem Cells, 2008, vol. 26, pp. 1695–1704.PubMedCrossRefGoogle Scholar
  17. Hoffman, L.M., and Carpenter, M.K., Human Embryonic Stem Cell Stability, Stem Cell Rev., 2005, vol. 1, pp. 139–144.PubMedCrossRefGoogle Scholar
  18. Husein, K.S., and Thiemermann, C., Mesenchymal Stromal Cells: Current Understanding and Clinical Status, Stem Cells, 2010, vol. 28, pp. 585–596.Google Scholar
  19. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N., Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Comprising the Three Embryonic Germ Layers, Mol. Med., 2000, vol. 6, pp. 88–95.PubMedGoogle Scholar
  20. Jori, F.P., Napolitano, M.A., Melone, M.A., Cipollaro, M., Cascino, A., Altucci, L., Peluso, G., Giordano, A., and Galderisi, U., Molecular Pathways Involved in Neural in vitro Differentiation of Marrow Stromal Stem Cells, J. Cell Biochem., 2005, vol. 94, pp. 645–655.PubMedCrossRefGoogle Scholar
  21. Kato, K., Yoshimoto, M., Kato, K., Adachi, S., Yamayoshi, A., Arima, T., Asanoma, K., Kyo, S., Nakahata, T., and Wake, N., Characterization of Side-Population Cells in Human Normal Endometrium, Hum. Reprod., 2007, vol. 22, pp. 1214–1223.PubMedCrossRefGoogle Scholar
  22. Kearns, M., and Lala, P.K., Bone Marrow Origin of Decidual Cell Precursors in the Pseudopregnant Mouse Uterus, J. Exp. Med., 1982, vol. 155, pp. 1537–1554.PubMedCrossRefGoogle Scholar
  23. Kozhukharova, I.V., Fridlyanskaya, I.I., Kovaleva, Z.V., Pugovkina, N.A., Alekseenko, L.L., Zenin, V.V., Ivantsov, K.M., Leont’eva, O.K., Grinchuk, T.M., and Nikol’sky, N.N., Novel Human Embryonic Stem Cell Lines C612 and C910, Tsitologiia, 2009, vol. 51, no. 7, pp. 551–558.PubMedGoogle Scholar
  24. Lee, J.B., Lee, J.E., Park, J.H., Kim, S.J., Kim, M.K., Roh, S.I., and Yoon, H.S., Establishment and Maintenance of Human Embryonic Stem Cell Lines on Human Feeder Cells Derived from Uterine Endometrium under Serum-Free Condition, Biol. Reprod., 2005, vol. 72, pp. 42–49.PubMedCrossRefGoogle Scholar
  25. Lees, J.G., Lim, S.A., Croll, T., Williams, G., Lui, S., Cooper-White, J., McQuade, L.R., Mathiyalagan, B., and Tuch, B.E., Transplantation of 3D Scaffolds Seeded with Human Embryonic Stem Cells: Biological Features of Surrogate Tissue and Teratoma-Forming Potential, Regen. Med., 2007, vol. 2, pp. 289–300.PubMedCrossRefGoogle Scholar
  26. Ludwig, T.E., Levenstein, M.E., Jones, J.M., Berggren, W.T., Mitchen, E.R., Frane, J.L., Crandall, L.J., Daigh, C.A., Conard, K.R., Piekarczyk, M.S., Llanas, R.A., and Thomson, J.A., Derivation of Human Embryonic Stem Cells in Defined Conditions, Nat. Biotechnol., 2006, vol. 24, pp. 185–187.PubMedCrossRefGoogle Scholar
  27. Masuda, H., Matsuzaki, Y., Hiratsu, E., Ono, M., Nagashima, T., Kajitani, T., Arase, T., Oda, H., Uchida, H., Asada, H., Ito, M., Yoshimura, Y., Maruyama, T., and Okano, H., Stem Cell-Like Properties of the Endometrial Side Population: Implication in Endometrial Regeneration, PLoS One, 2010, vol. 5, p. e10387.PubMedCrossRefGoogle Scholar
  28. Meng, X., Ichim, T.E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K.W., Thébaud, B., and Riordan, N.H., Endometrial Regenerative Cells: A Novel Stem Cell Population, J. Transl. Med., 2007, vol. 5, pp. 57–66.PubMedCrossRefGoogle Scholar
  29. Murphy, M.P., Wang, H., Patel, A.N.., Kambhampati, S., Angle, N., Chan, K., Marleau, A.M., Pyszniak, A., Carrier, E., and Ichim, T.E., et al., Allogeneic Endometrial Regenerative Cells: An ‘off the Shelf Solution’ for Critical Limb Ischemia? J. Transl. Med., 2008, vol. 6, pp. 45–52.PubMedCrossRefGoogle Scholar
  30. Musina, R.A., Bekchanova, E.S., Belyavsky, A.V., and Sukhikh, G.T., Differentiation Potential of Mesenchymal Stem Cells of Different Origin, Klet. Tekhn. Biol. Med., 2006, vol. 1, pp. 39–43.Google Scholar
  31. Musina, R.A., Belyavsky, A.V., Tarusova, O.V., Solovyeva, E.V., and Sukhikh, G.T., Endometrial Mesenchymal Stem Cells Obtained from Menstrual Blood, Klet. Tekhn. Biol. Med., 2008, vol. 2, pp. 110–114.Google Scholar
  32. Padykula, H.A., Coles, L.G., Okulicz, W.C., Rapaport, S.I., Mccracken, J.A., King, N.W., Jr., Longcope, C., and Kaiserman-Abramof, I.R., The Basalis of the Primate Endometrium: A Bifunctional Germinal Compartment, Biol. Reprod., 1989, vol. 40, pp. 681–690.PubMedCrossRefGoogle Scholar
  33. Padykula, H.A., Regeneration in the Primate Uterus: The Role of Stem Cells, Ann. N.Y. Acad. Sci., 1991, vol. 622, pp. 47–56.PubMedCrossRefGoogle Scholar
  34. Park, K.R., Inoue, T., Ueda, M., Hirano, T., Higuchi, T., Maeda, M., Konishi, I., Fujiwara, H., and Fujii, S., CD9 Is Expressed on Human Endometrial Epithelial Cells in Association with Integrins a6, a3 and B1, Mol. Human Reprod., 2000, vol. 6, pp. 252–257.CrossRefGoogle Scholar
  35. Parker, A.M., and Katz, A.J., Adipose-Derived Stem Cells for the Regeneration of Damaged Tissues, Expert. Opin. Bio. Ther., 2006, vol. 6, pp. 567–578.CrossRefGoogle Scholar
  36. Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, F.J., and Allickson, J.G., Multipotent Menstrual Blood Stromal Stem Cells: Isolation, Characterization, and Differentiation, Cell Transplant., 2008, vol. 17, pp. 303–311.PubMedCrossRefGoogle Scholar
  37. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, 1999, vol. 284, pp. 143–147.PubMedCrossRefGoogle Scholar
  38. Prianishnikov, V.A., On the Concept of Stem Cell and a Model of Functional Morphological Structure of the Endometrium, Contraception, 1978, vol. 18, pp. 213–223.PubMedCrossRefGoogle Scholar
  39. Schwab, K.E., and Gargett, C.E., Co-Expression of Two Peri-Vascular Cell Markers Isolates Mesenchymal Stem-Like Cells from Human Endometrium, Hum. Reprod., 2007, vol. 22, pp. 2903–2911.PubMedCrossRefGoogle Scholar
  40. Seli, E., Senturk, L., Bahtiyar, O.M., Kayisli, U.A., and Arici, A., Expression of Aminopeptidase N in Human Endometrium and Regulation of Its Activity by Estrogen, Fertil. Steril., 2001, vol. 75, pp. 1172–1176.PubMedCrossRefGoogle Scholar
  41. Smith, J.R., Pochampally, R., Perry, A., Shu-Ching, Hsu, and Prockop, D.J., Isolation of a Highly Clonogenic and Multipotential Subfraction of Adult Stem Cells from Bone Marrow Stroma, Stem Cells, 2004, vol. 22, pp. 823–837.PubMedCrossRefGoogle Scholar
  42. Swijnenburg, R.J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., Lebl, D.R., Caffarelli, A.D., De Bruin, J.L., Fedoseyeva, E.V., and Robbins, R., Embryonic Stem Cell Immunogenicity Increases upon Differentiation after Transplantation into Ischemic Myocardium, Circulation, 2005, vol. 112, pp. 166–172.Google Scholar
  43. Taylor, H.S., Endometrial Cells Derived from Donor Stem Cells in Bone Marrow Transplant Recipients, J. Amer. Med. Assoc., 2004, vol. 292, pp. 81–85.CrossRefGoogle Scholar
  44. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M., Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, 1998, vol. 282, pp. 1145–1147.PubMedCrossRefGoogle Scholar
  45. Toyoda, M., Cui, C., and Umezawa, A., Myogenic Transdifferentiation of Menstrual Blood-Derived Cells, Acta Myol., 2007, vol. 26, pp. 176–178.PubMedGoogle Scholar
  46. Trzaska, K.A., Kuzhikandathil, E.V., and Rameshwar, P., Specification of a Dopaminergic Phenotype from Adult Human Mesenchymal Stem Cells, Stem Cells, 2007, vol. 25, pp. 2797–2808.PubMedCrossRefGoogle Scholar
  47. Wolff, E.F., Gao, X.B., Yao, K.V., Andrews, Z.B., Du, H., Elsworth, J.D., and Taylor, H.S., Endometrial Stem Cell Transplantation Restores Dopamine Production in a Parkinson’s Disease Model, J. Cell. Mol. Med., 2011, vol. 15, pp. 747–755.PubMedCrossRefGoogle Scholar
  48. Woodbury, D., Reynolds, A., and Black, I.B., Adult Bone Marrow Stromal Stem Cells Express Germline, Ectodermal, Endodermal and Mesodermal Genes Prior to Neurogenesis, J. Neurosci. Res., 2002, vol. 96, pp. 908–917.CrossRefGoogle Scholar
  49. Zhong, Z., Patel, A.N., Ichim, T.E., Riordan, N.H., Wang, H., Min, W.P., Woods, E.J., Reid, M., Mansilla, E., Marin, G.H., Drago, H., Murphy, M.P., and Minev, B., Feasibility Investigation of Allogeneic Endometrial Regenerative Cells, J. Transl. Med., 2009, vol. 7, pp. 15–21.PubMedCrossRefGoogle Scholar
  50. Zwart, I., Hill, A.J., Girdlestone, J., Manca, M.F., Navarrete, R., Navarrete, C., and Jen, L.S., Analysis of Neural Potential of Human Umbilical Cord Blood-Derived Multipotent Mesenchymal Stem Cells in Response to a Range of Neurogenic Stimuli, J. Neurosci. Res., 2008, vol. 86, pp. 1902–1915.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. I. Zemelko
    • 1
  • T. M. Grinchuk
    • 1
  • A. P. Domnina
    • 1
  • I. V. Artzibasheva
    • 1
  • V. V. Zenin
    • 1
  • A. A. Kirsanov
    • 3
  • N. K. Bichevaia
    • 3
  • V. S. Korsak
    • 3
  • N. N. Nikolsky
    • 1
    • 2
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Faculty of Medical PhysicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.International Center of Reproductive MedicineSt. PetersburgRussia

Personalised recommendations