Cell and Tissue Biology

, 5:503 | Cite as

Comparative characteristics of serotoninergic neurons in some nuclei of rat medulla

  • A. E. Kotsyuba
  • V. M. Chertok
  • E. P. Kotsyuba


Using the immunohistochemical method, serotoninergic neurons were identified in eight medulla nuclei in the bulbar vasomotor centers of Wistar rats. Using morphometry, it was established that the proportion of serotoninergic neurons located in the projection of the studied nuclei varied at 17–26%; the value of this parameter only reached 34–40% in nuclei of the posterior raphe group. Single immunopositive cells able to perform integrative functions in the regulation of hemodynamics were identified between the nuclei, as well as between nuclei and conducting pathways.


serotononinergic neurons medulla bulbar vasomotor center 

Abbreviations used


pallidum raphe nucleus


dorsal vagus nucleus


large raphe nucleus


reticular magnocellular nucleus


reticular lateral nucleus


reticular parvicellular nucleus


dark raphe nucleus


solitary tract nucleus


serotoninergic neurons


  1. Abramets, I.I., Types of Central Serotoninergic Receptors, Their Functional Role, and Involvement in the Effect of Psychopharmaceuticals, Farmakol. Toksikol., 1990, vol. 53, no. 5, pp. 70–75.PubMedGoogle Scholar
  2. Afanas’ev, A.A., Kotsyuba, A.E., and Chertok, V.M., ALLEGRO-MS System for Automated Image Analysis of Micro- and Macrostructures, Tikhookeansk. Med. Zh., 2002, vol. 10, no. 3, pp. 65–68.Google Scholar
  3. Bayliss, D.A., Li, Yu-W., and Talley, E.M., Effects of Serotonin on Caudal Raphe Neurons: Activation of an Inwardly Rectifying Potassium Conductance, J. Neurophysiol., 1997, vol. 77, pp. 1349–1361.PubMedGoogle Scholar
  4. Belousov, Yu.B., and Krivonkin, K.Yu., The Role of Serotonin and Its Receptors in the Genesis of Hypertension, Kardiologiya, 1992, vol. 12, no. 11, pp. 5–9.Google Scholar
  5. Blier, P., and Ward, N.M., Is the a Role for 5HT-1A-Agonists in the Treatment of Depression, Biol. Psychiat., 2003, vol. 53, pp. 193–203.PubMedCrossRefGoogle Scholar
  6. Brezhestovskii, P.D., and Khaspekov, L.G., Modulation of Calcium-Induced Synaptic Transmission, Biol. Membr., 2007, vol. 24, no. 1, pp. 32–42.Google Scholar
  7. Cauli, B., Tong, X.-K., Rancillac, A., Serluca, N., Lambolez, B., Rossier, J., and Hamel, E., Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways, J. Neurosci., 2004, vol. 41, pp. 8940–8949.CrossRefGoogle Scholar
  8. Ciriello, J., Caverson, M.M., Calaresu, F.R., and Krukoff, T.L., Neuropeptide and Serotonin Immunoreactive Neurons in the Cat Ventrolateral Medulla, Brain Res., 1988, vol. 440, pp. 53–66.PubMedCrossRefGoogle Scholar
  9. Dahlstrom, A., and Fuxe, K., Localization of Monoamines in the Lower Brain Stem, Experientia, 1964, vol. 20, pp. 398–399.PubMedCrossRefGoogle Scholar
  10. Gorcs, T.J., Liposits, Z., Palay, S.L., and Chan-Palay, V., Serotonin Neurons on the Ventral Brain Surface, Neurobiology, 1985, vol. 82, pp. 7449–7452.Google Scholar
  11. Halliday, G.M., Li, Y.W., Joh, T.H., Cotton, R.G.H., Howe, P.R.C., Geffen, L.B., and Blessing, W.W., Distribution of Monoamine-Synthesizing Neurons in the Human Medulla Oblongata, J. Comp. Neurol., 1988, vol. 273, pp. 301–317.PubMedCrossRefGoogle Scholar
  12. Holstege, J.C., and Knypers, H.G., Brainstem Projections to Spinal Motoeurons: an Update Commentary, Neuro Sci., 1987, vol. 23, pp. 809–821.Google Scholar
  13. Izzati-zade, K.F., Basha, A.V., and Demchuk, N.D., Serotonin Metabolism Disorders in the Pathogenesis of Nervous System Diseases, Zh. Nevrol. Psikhiatr., 2004, vol. 9, pp. 62–70.Google Scholar
  14. Khrulev, S.V., and Dyuizen, I.V., Colocalization of Serotonin and Nitroxide Synthase in Neurons in of Subcortical White Matter of Human Brain, Tikhookeansk. Med. Zh., 2004, vol. 16, no. 2, pp. 23–26.Google Scholar
  15. Kotsyuba, A.E., and Chertok, V.M., The Spatial Organization of Serotonergic and Nitroxidergic Neurons in Some Nuclei of the Bulbar Region of Human Cardiovascular Center, Tikhookeansk. Med. Zh., 2010, vol. 42, no. 4, pp. 43–46.Google Scholar
  16. Kuhn, D.M., Wolf, W.A., and Lovenberg, W., Review of the Role of the Central Serotonergic Neuronal System in Blood Pressure Regulation, Hypertension, 1980, vol. 3, pp. 243–255.Google Scholar
  17. Lanctt, K.L., Herrmann, N., and Mazzotta, P., Role of Serotonin in the Behavioral and Psychological Symptoms of Dementia, J. Neuropsychiatry Clin. Neurosci., 2001, vol. 13, pp. 5–21.CrossRefGoogle Scholar
  18. Lautsyavichyus, A.P., Megiig, R., and Martsinkyavichyus, A.M., Electrophysiological Effect of Serotonin on Atrioventricular Conduction in Dogs, Byull. Eksp. Biol. Med., 1989, vol. 108, no. 11, pp. 519–522.Google Scholar
  19. Lee, W.S., and Moskowitz, M.A., Conformationally Restricted Sumatriptan Analogues, CP-122.288 and CP-122.638, Exhibit Enhanced Potency Against Neurogenic Inflammation in Dura Mater, Brain Res., 1993, vol. 626, pp. 303–312.PubMedCrossRefGoogle Scholar
  20. Levada, O.A., Neurobiology of Depression: The Serotonin System of the Brain, Neuro News, 2008, vol. 1, pp. 25–29.Google Scholar
  21. Lutsenko, N.G. and Suvorov, N.N., Regulation of the Biosynthesis of Serotonin in the Central Nervous System, Usp. Sovrem. Biol., 1982, vol. 94, pp. 243–251.PubMedGoogle Scholar
  22. Makarov, A.Yu., and Pomnikov, V.G., Role of Serotonin in the Pathogenesis of Cerebral Circulation Disorders, Zh. Nevrol. Psikhiatr., 1982, vol. 92, no. 8, pp. 118–122.Google Scholar
  23. Makolkin, V.I., Podzolkov, V.I., and Gilyarov, M.Yu., Serotonergic System as a Component in the Pathogenesis of Arterial Hypertension, Klin. Med., 1993, vol. 6, pp. 6–9.Google Scholar
  24. Martin, G.R., Vascular Receptors for 5-Hydroxitriptamine: Distribution, Function, and Classification, Pharmacol. Ther., 1994, vol. 62, pp. 283–291.PubMedCrossRefGoogle Scholar
  25. McAllen, R.M., May, C.N., and Shafon, A.D., Functional Anatomy of Sympathetic Premotor Cell Groups in the Medulla, Clin. Exp. Hypertens., 1995, vol. 17, pp. 209–21.PubMedCrossRefGoogle Scholar
  26. Meerson, F.Z., and Skibitsky, V.V., Comparative Antiarrhythmic Effectiveness of Activators of Limiting Stress Systems of the Body in Patients with Cardiac Arrhythmias, Kardiologiya, 1992, vol. 4, pp. 25–28.Google Scholar
  27. Mikhailova, S.D., Serotonin Involvement in the Formation of Activities of the Bulbar Cardiovascular Center, Vestn. Ross. Gos. Med. Univ., 2009, vol. 1, pp. 68–70.Google Scholar
  28. Minson, J.B., Llewellyn-Smith, I.J., Arnolda, L.F., Pilowsky, P.M., and Chalmers, J.P., C-fos Expression in Central Neurons Mediating the Arterial Baroreceptor Reflex, Clin. Exp. Hypertens., 1997, vol. 19, no. 5–6, pp. 631–643.PubMedCrossRefGoogle Scholar
  29. Prokop’eva, E.V. and Nikolaeva, L.A., Serotonergic System of the Brain and Its Effect on Cardiovascular Activity, in Sb. nauchnykh trudov: Aktual’nye problemy biologii, meditsiny i ekologii (Relevant Problems of Biology, Medicine, and Ecology: Collected Papers), Tomsk, Tomsk Gos. Univ., 2004, vol. 1, pp. 54–56.Google Scholar
  30. Prokop’eva, E.V. and Pivovarov, Yu.I., The Role of the Large Dorsal Raphe Nuclei in the Myocardial Arrhythmogenesis in Acute Myocardial Ischemia, Sib. Med. Zh., 2000, vol. 2, pp. 36–38.Google Scholar
  31. Saxena, P.R., and Villalon, C.M., Cardiovascular Effects of Serotonin Agonists and Antagonists, J. Cardiovasc. Pharmacol., 1990, vol. 15, pp. 17–34.Google Scholar
  32. Schoenen, J;, Sawyer, J., Zolmitriptan (Zomig, 311C90), a Novel Dual Central and Peripheral 5HT1B/1D Agonist: an Overview of Efficacy, Cephalalgia: an International Journal of Headache, 1997, vol. 18, pp. 28–40.Google Scholar
  33. Sergeev, P.V., Shimanovskii, N.L., and Petrov, V.I., Retseptory fiziologicheski aktivnykh veshchestv (Receptors of Physiologically Active Compounds), Moscow: Sem’ vetrov, 1999.Google Scholar
  34. Silberstein, S.D., Serotonin (5-HT) and Migraine, Headache Rev., 1994, vol. 34, pp. 408–417.CrossRefGoogle Scholar
  35. Sole, M.J., Versteeg, D.H., de, Kloet, E.R., Hussain, N., and Lixfeld, W., The Identification of Specific Serotonergic Nuclei Inhibited by Cardiac Vagal Afferents during Acute Myocardial Ischemia in the Rat, Brain Res., 1983, vol. 265, pp. 55–61.PubMedCrossRefGoogle Scholar
  36. Stein, D.J., Serotonergic Neurocircuitry in Mood and Anxiety Disorders, London: Martin Dunitz, 2003.Google Scholar
  37. Tada, M., Kakita, A., Toyoshima, Y., Onodera, O., Ozawa, T., Morita, T., Nishizawa, M., and Takahashi, H., Depletion of Medullary Serotonergic Neurons in Patients with Multiple System Atrophy Who Succumbed to Sudden Death, Brain, 2009, vol. 132, pp. 1810–1819.PubMedCrossRefGoogle Scholar
  38. Tanaka, M, Okamura, H, Tamada, Y, Nagatsu, I, Tanaka, Y, and Ibata, Y., Catecholaminergic Input to Spinally Projecting Serotonin Neurons in the Rostral Ventromedial Medulla Oblongata of the Rat, Brain Res. Bull., 1994, vol. 35, pp. 23–30.PubMedCrossRefGoogle Scholar
  39. Tsyrlin, V.A., Bulbar Vasomotor Center: Morphofunctional and Neurochemical Organization, Arter. Gipertenz., 2003, vol. 9, no. 3, pp. 77–81.Google Scholar
  40. Urtikova, N.A., Sapronova, A.Ya., Brisorgueil, M.-J,. Verge, D., and Ugryumov, M.V., Development of Serotonergic Neurons of Dorsal Raphe Nuclei in Mice with Knockout of Monoamine Oxidase A and 5-HT1A and 5-HT1B Autoreceptor, Russ. J. Dev. Biol., 2009, vol. 40, no. 4, pp. 212–221.CrossRefGoogle Scholar
  41. Valenta, B., and Singer, A., Hypotensive Effects of 8-Hydroxy-2-(di-n-propylamino) Tetralin and 5-Methylurapidil Following Stereotaxic Microinjection into the Ventral Medulla of the Rat, Br. J. Pharmacol., 1990, vol. 99, pp. 713–716.PubMedGoogle Scholar
  42. VanderMaelen, C.P., Matheson, G.K., Wilderman, R.C., and Patterson, L.A., Inhibition of Serotonergic Dorsal Raphe Neurons by Systemic and Iontophoretic Administration of Buspirone, a Non-benzodiazepin Anxiolytic Drug, Europ. J. Pharmacol., 1986, vol. 129, pp. 123–130.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. E. Kotsyuba
    • 1
  • V. M. Chertok
    • 1
  • E. P. Kotsyuba
    • 2
  1. 1.Vladivostok State Medical UniversityVladivostokRussia
  2. 2.Zhirmunskii Institute of Marine BiologyFar East Branch of Russian Academy of SciencesVladivostokRussia

Personalised recommendations